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ABSTRACT ALGEBRA
Unit I- Topics
Definition of groups- examples- elementary properties- equivalent definitions- cyclic
groups - order of an element.

Chapter 1 : Basics of Groups
1.1 Binary operation:
A binary operation is a “way of putting two things together”.
For example in the set N of natural numbers we can associate with any two
elements a, b  N the unique element a + b N. Again with any two sets, A,B  f(x)
we can associate the set AB  f(x).
Here + in N gives rise to the function + : N  N -> N given by (a, b) -> a + b.
1.2 Definition
Let A be non - empty set. A binary operation * on A is a function *: A  A -> A.
The image of an ordered pair (a, b) ℇ A  A under * is denoted by a * b. A set A
with a binary operation * defined on it is denoted by (A, *).
Examples
1. The usual addition + , is a binary operation on N, Z, Q, R and C.
2. On f(x), , ,  and are binary operations
3. Let A = {0, 1, 2}. A binary operation * on A is given by 0*1 = 1*0 = 1; 0*2 =
2* 0 = 2; 1*2 = 2*1 = 0; 0*0 = 0; 1*1 = 2; 2*2 = 1.
If * is a binary operation on a finite set A containing n elements then the n2

products a * b , a, b  A can be conveniently arranged in the form of a table
containing n rows and n columns, the product a * b coming in the row along a
and in the column along b. Thus the above binary operation on A is given by the
table.

* 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Question to revise 1. Define Binary operation:
If f is a function from G G,then f is said to be a binary operation on the set
G.The image of the ordered pair (a,b) under the function f is denoted by a f b.

1.3 Algebraic structure
Yet despite this simplicity of description the fundamental algebraic concepts such as
homomorphism, quotient construction, and the like, which play such an important role
in all algebraic structures- in fact , in all of mathematics - already enter here in a pure
and revealing form.
Question to revise2: Define .algebraic structure:
A non-empty set G equipped with one or more binary operation is called an algebraic
structure.
Examples: (N,+) (I,+) (I,-) (R,+,ᵒ) are all algebraic structure.
1.4 Semi group:



Let us consider, an algebraic system (A, *), where * is a binary operation on A. Then,
the system (A, *) is said to be semi-group if it satisfies the following properties:

1. The operation * is a closed operation on set A.
2. The operation * is an associative operation.

Example:

Consider an algebraic system (A, *), where A = {1, 3, 5, 7, 9....}, the set of positive
odd integers and * is a binary operation means multiplication. Determine whether (A,
*) is a semi-group.

Solution:

Closure Property: The operation * is a closed operation because multiplication of two
+ve odd integers is a +ve odd number.

Question to revise3. Define Semi group:
An algebraic structure (G,*) is called a semi group if the binary operation * is
associative in G. i.e) if (a*b)*c=a*(b*c)
Chapter 2: Elementary properties of Groups

2.1 Group
Modern algebra is largely concerned with the study of abstract sets endowed with one
or more binary operations. We introduce one of the basic algebraic structures known
as groups. A group is a set with one binary operation defined on it satisfying some
natural conditions. The definition of a group is an abstraction of the familiar
properties of (Z, +) given below
(i) Addition is an associative binary operation in Z.
(ii) The element 0 Z is such that a + 0 = 0 + a = a for all a Z.

Hence 0 is the identity element with respect to addition.
(iii) Let a Z. The element -a  Z is such that a + (-a) = (- a) +a = 0.

Hence -a is the inverse of a.

Question to revise3.: Define Group:

The algebraic structure (G,*) is a group if the binary operation * satisfies the
following postulates:

i)closure property
ii)Associative property
iii)Existence of identity
iv)Existence of inverse

2.2 Definition:
Let G be a non-empty set with a binary operation *. G is called a group if the

following axioms are satisfied.

Closure Property : For any two elements a, b ∈ G ,a*b ∈ G



Associative law : For any three elements a, b, c ∈ G, a* (b*s) = (a* b)* c

Identity : For any element a ∈ G , there exists an element e ∈ G such that

a* e = e* a = a , e is called identity element in G.

Inverse : For any element a ∈G , there exists an element a' ∈ G such that a* a' = a'*

a = e

a' is called inverse of a.

Note :
If the above axioms are satisfied we say that (G, *) is a group.

Examples of group
1. The set Z of all integers is a group with respect to the operation addition.

2. The set Q of all rational numbers is a group with respect to addition.

3. The set R of all real numbers is a group with respect to addition.

4. The set C of all complex number is a group with respect to addition.

5. The set of all non-zero rational numbers Q -{0) is a group with respect to

multiplication.

6. The set of all non-zero real numbers R - {0) is a group with respect to

multiplication.

7. The set of all non-zero complex numbers C-{0) is a group with respect to

multiplication.

8. The set of all non-zero integers is not a group with respect to multiplication since

integers do not possess inverse with respect to multiplication.

2.3 Properties of Group

2.3.1 Property
The identity element in a group (G, *) is unique.

Proof:

If possible, let and be two identity elements in a group (G, *)

Considering as identity element,

* = * = …………………….(1)

Considering as identity element,

* = * = ………………………….(2)

From (1) and (2), we have = . Hence there can be only one identity element in a

group



i.e., Identity element in a group is unique.

2.3.2 Property
The inverse of an element in a group is unique.

Solution :
Let (G, *) be a group and e be the identity element. Let a be any element in it. If

possible, let and a'anda'' be the inverses of a.

Then a* a' = a'* a = e

a* a" = a"* a = e

In a group, associative law is true.

i.e., a' * (a* a") = (a' * a)* a"

i.e., a'* e = e* a"

i.e., a' = a"

There is only one inverse for each element of a group. i.e., the inverse of an element

in a group is unique.

2.3.3 Note : The inverse of an element is also denoted by .

2.3.4 Property :(Cancellation laws)
Prove that in a group, for any three elements in G ;

(i) a* b = a* c⇒ b = c (Left cancellation law)

(ii) (ii) b* a = c* a ⇒b = c (Right cancellation law)

Proof:
Let a ' be the inverse of a.

(i) a* b = a* c ⇒a'*(a*b)=a'*(a*c)

⇒(a'* a)* b = (a'* a)* c (Associative law)

⇒e* b = e* c ⇒b = c .

(ii) b* a = c* a ⇒(b* a)* a' = (c* a)* a'

⇒b*(a*a') = c*(a* a')

⇒b* e = c* e ⇒ b = c

2.3.5 Property
Let G be a group and a, b ∈ G . Show that the equations a* x = b and y*a =b have

unique solution in G.

Proof :



First let us prove that there is a unique solution for the equation a* x = b . Let us

suppose that there are two solutions for x in G, say x = and x = . Then

a* =b and a* =b

a* = a*

∴By cancellation law, =

i.e., the solution for x is unique. Now let us find the solution.

Let a', be the inverse of a.

a* x = b⇒ a'*(a*x)= a'*b

⇒(a'* a)* x = a'*b

⇒e* x = a'*b

⇒x = a'*b

∴x = a'*b is the solution of the equation a* x = b

If and are the solutions of y* a =b , then *a = b and *a =b

∴ * a and *a and ∴ = (By Cancellation law)

Also (y* a)*a' = b* a'

y*(a* a') = b* a'

y* e = b* a'

i. e., y = b* a'

2.3.6 Property (Reversal Law)
In a group G, for any two elements a, b ∈ G , the inverse of the product is equal to the

product of the inverse in the reverse order. i.e., (a*b)' = b'* a'

Proof:
For any two elements x, y ∈ G to be the inverses of each other, we have to show that

x* y = y* x = e

We want to prove b'* a' is the inverse of a* b . For this we have to prove that

(a* b)*(b' *a')= e

and (b'*a')*(a*b) = e

Now (a* b) * (b' * a')

= a*(b* b')* a' (Associative law)

= (a* e)* a'

= a* a' = e -------------(1)



Also (b'*a')*(a*b) = b' * (a'* a)* b

= b'*(e*b)

= b'* b =e -----------------------(2)

From (1) and (2),

b',* a', is the inverse of a* b

∴(a* b)' = b'* a'

2.3.7 Note: This result can be generalized for n elements , ,∈ G ,

i.e., ( * )' = * ………………………..*a'

2.3.8 Property
The inverse of an inverse of an element in a group is the element itself, i.e., (a')' = a .

Proof:
Let a" be the inverse of a' .

Then a'* a" =a''*a' = e -----------------(1)

Since a' is the inverse of a,

a* a' = a'*a = e --------------------------(2)

From (1) and (2),

a'*a" = a'*a By cancellation law, a" = a

i. e., (a')' = a

Chapter 4: Equivalent definitions of a group

4.1.1 Definition
Let * be a binary operation defined on G. an element e ∈ G is called a left identity

if e * a = a for all a ∈ G. e is called a right identity if a ∗ e = a for all a ∈ G.

4.1.2 Example
1. in C we define z ° z = |z |z . Here all elements z such that |z| = 1 are left

identities.

2. In R we define a * b = ab2 . Here 1 and -1 are right identities.

3. In N we define a * b = a. Here every element is a right identity.

4.1.3 Definition
Let * be a binary operation defined on G. Let e ∈ G be the identity element. Let a

∈ G. An element a’ ∈ G is called a left inverse of a if a’ * a = e. a’ is called a

right inverse of a if a * a’ = e.

4.1.4 Note



The identity element e of a group G is both a left identity and a right identity. The

inverse of any element a ∈ G is both a left inverse and a right inverse.

4.1.5 Theorem
A semigroup G contains left identity e and a left inverse a’ for every a, e in G,

then G is a group.

Proof
a' is a left inverse of a so that a’a = e.

let a’’ be a left inverse of a’ so that a’’a’ = e

then aa’ = e(aa’) [ since e is left identity]

= (a’’a’)(aa’) = a’’(a’a)a’ [associative]

= a’’ (ea’) = a’’a’ [ since e is left identity]

= e. Hence a’ is also a right inverse of a .

Also a = ea = (aa’)a = a(a’a) = ae. Hence e is also a right identity.

Thus ea = a = ae and a’a = aa’ = e and for all a ∈ G. Hence G is a group.

4.1.6 Theorem
A semigroup G contains right identity e and right inverse a’ with respect to e for

every element a, e in G, then G is a group.

The proof is similar to previous theorem.

4.1.7 Note
If G is a semigroup with respect the operation * defined on it such that there exists

a left identity and a right inverse for each element, then (G, *) need not be a group.

For example, consider (R, *) where a * b = |a|b.

Clearly * is a binary operation on R*.

Now, a * (b*c) = (a * b ) * c = |a| |b| c and hence * is associative.

(-1) * a = |-1|a = a. Hence -1 is a left identity.

Now, when a < 0 ; a * (1/a) = |a|(1/a) = (-a)(1/a) = -1 and

when a > 0; a * (-1/a) = |a|(-1/a) = (a) (-1/a) = -1.

Hence if a < 0 , (1/a) is the right inverse of a and if a > 0, (-1/a) is the right inverse

of a. However (R*, *) is not a group since the equation y * a = a has two

solutions namely 1 and -1.

4.1.8 Theorem



Let G be semigroup such that the equation ax = b and ya = b have unique

solutions for x and y in G. Then G is a group.

Proof
Let a ∈ G. Then there exists a unique e ∈ G such that ea = a.

Now, let b be any other element in G. Then there exists a unique x in G such that

ax = b

Now, eb = e(ax) = (ea)x = ax = b

eb = b for all b ∈ G so that e is a left identity.

Let a ∈ G. Then ya = a has a unique solution a’.

a'a = e so that a’ is the left inverse of a.

Hence by theorem 4.1.5, G is a group.

4.1.9 Theorem
Let G be a semigroup contains both cancellation laws. Then G is a group.

Proof
Let G = { a1,a2, ……, an }

Now let a, b ∈ G

Consider the elements aa1, aa2, ……..aan.

All these elements are distinct, for if aar = aas then ar = as (by cancellation law).

Hence aa1, aa2,………aan are just the elements a1, a2, ……an of G in some order and

hence aai = b for some i.

Thus the equation ax = b has a unique solution for x in G. Similarly taking the

elements aa1, aa2,………aan we can prove that the equation ya = b has a unique

solution for y in G.

Hence by previous theorem, G is a group.

4.1.10 Note
The above theorem is not true if G is infinite. For example, consider (N, +).

Clearly N+ is a semigroup and both cancellation laws hold good in N. But (N,

+) is not a group.



Chapter 5:Cyclic groups

5.1 Definition.
Let G be a group, and let a be any element of G. The set

<a> = { x G | x = an for some n Z }

is called the cyclic subgroup generated by a.
The group G is called a cyclic group if there exists an element a G such that G=<a>.
In this case a is called a generator of G.

5.2 Proposition.

Let G be a group, and let a G.

(a) The set <a> is a subgroup of G.
(b) If K is any subgroup of G such that a K, then <a> K.

5.3 Proposition.
Let a be an element of the group G.

(a) If a has infinite order, and ak = am for integers k,m, them k=m.
(b) If a has finite order and k is any integer, then ak = e if and only if o(a) | k.
(c) If a has finite order o(a)=n, then for all integers k, m, we have

ak = am if and only if k m (mod n).

Furthermore, |<a>|=o(a).
5.4 Corollaries to Lagrange's Theorem (restated):

(a) For any a G, o(a) is a divisor of |G|.
(b) For any a G, an = e, for n = |G|.
(c) Any group of prime order is cyclic.

5.5 Theorem. Every subgroup of a cyclic group is cyclic.

5.6 Theorem. Let G cyclic group.

(a) If G is infinite, then G Z.
(b) If |G| = n, then G Zn.

5.7 Proposition.
Let G = <a> be a cyclic group with |G| = n.
(a) If m Z, then <am> = <ad>, where d=gcd(m,n), and am has order n/d.
(b) The element ak generates G if and only if gcd(k,n)=1.

(c) The subgroups of G are in one-to-one correspondence with the positive divisors of
n.

(d) If m and k are divisors of n, then <am> <ak> if and only if k | m.



5.8 Definition.
Let G be a group. If there exists a positive integer N such that aN=e for all a G, then
the smallest such positive integer I is called the exponent of G.

5.9 Lemma.

Let G be a group, and let a,b G be elements such that ab = ba. If the orders of a and
b are relatively prime, then o(ab) = o(a)o(b).

5.10 Proposition.

Let G be a finite abelian group.

(a) The exponent of G is equal to the order of any element of G of maximal
order.
(b) The group G is cyclic if and only if its exponent is equal to its order.

Question to revise20. Define cyclic groups:
A group G is called cyclic if for a G, every element x G is of the form an, where n is
some integer. The element a is then called a generator of G.

Chapter 6: Finite and infinite groups :
A group which contains only finite number of elements is called a finite group. A

group which is not finite is called an infinite group.

6.1 Order of an Group :
The number of elements in a group is called the order of the group and is denoted by

O(G). In the case of a finite group the order is finite and the order of an infinite group

is infinity.

6.2 Integral power of an element :
Let G be a group and a be an element of G. For any positive integer n,

a .a .a ………………………..n times = a''

We note ( = (a .a . a ……n times

= , n times

=(

Ie.,( =

Also, we define for any element a, a°= e and = ( =

6.3 Order of an element in a group :



Let G be a group and a be any element in G. If there exists a least positive integer

n such that = e then n is called the order of the element a. It is denoted by o(a) =

n

6.4 Congruent modulo n :
Let n be a positive integer. An integer a is said to be congruent modulo n to the

integer b if and only if a - b is divisible by n i.e., a - b = r n where r is an integer.

This is denoted by a ≡ b (modulo n)

6.5 Example 15 ≡3 (modulo 4)

15 =1 (modulo 7)

The different numbers congruent to 0 modulo 3 are

………………….- 9, - 6, -3, 0, 3, 6, 9, ………………….

Numbers congruent to 1 modulo 3 are

…………….-11, - 8, -5, - 2, 1, 4, 7, 10,………………………..

Numbers congruent to 2 modulo 3 are

…………. -10, - 7, -4, -1, 2, 5, 8, 11, …………….

6.6 Congruent classes modulo n :
The set of all integers congruent to a (modulo n) is denoted by [a] and its called the

congruent class modulo n. The distinct congruent classes modulo 3 are

[0] = {………….. -9, -6, -3, 0, 3, 6, 9……….}= {x ∈z∣x = 3k; k ∈z}

[1]= {…….-11, - 8, - 5, -2, 1, 4, 7, 10…… } = {x ∈ z∣x = 3k +1; k∈ z}

[2] ={…… -10,-7, -4, -1, 2, 5, 8, 11 …..}= {x ∈z∣x = 3k +2, k}

[3]= [0] =[3]= [9]=……….. [-3]= [-6]=……

The set of all congruent classes modulo 3 is denoted by

= {[0], [1], [2]}

Similarly, = {[0], [1], [2], [3]}

= [0], [1], [2], [3], [4]}

Addition modulo n of congruent classes



6.4 Definition :

Let [a], [b] ∈ „ . The addition modulo n of these two classes is defined by

[a + b] if a + b < n

[r] if a + b, zn and r is the positive remainder

[a] b] = when a + b is divided by n

[a] [b] = [ a + b] if a + b < n

[r]

E.g., [4] [5] = [4 +5] = [9] = [1]

6.5 Multiplication modulo n of congruent classes

Let [a], [b] ∈ The multiplication modulo n of these two classes is defined

by

[ab] if ab < n

[r] if ab ≥ n where r is the positive remainder

{[a] b] = when ab is divided by n

E.g., [4] [5] = [20] = [4]

[6] [7] = [42] = [2]

6.6 Example
The cube roots of unity form an abelian group under ordinary multiplication.

Solution :

1 �



The cube roots of unity are 1, �, . Let G =

{1, �, }

Since � is a cube root of unity, =1

Closure law :

From the multiplication table, we see that the set G is closed under multiplication.

Associative law :

Multiplication of complex numbers is always associative.

Identity :

From the table, we see that 1 is the identity element.

Inverse :

The inverses of 1, �, are , � respectively. ∴All elements of G possess inverse in

G.

Commutative law :

From the multiplication table, we see that multiplication is commutative. G is an

abelian group under addition.

Abelian group : A group (G, *) is called an Abelian group (or commutative group) if

it also satisfies the following axiom.

Commutative law : For any two elementsa, b ∈ G , a* b = b* a

Note : A non-empty set G with a binary operation is called an abelian group if all the

axioms 1 to 5 are satisfied.

6.7 Abelian group
A group G is said to be abelian if ab = ba for all a, b  G. A group which is not
abelian is called non abelian group.
Example

1. Z, Q, R and C under usual addition are abelian groups.
2. (f(x),  ) is an abelian group since A B = B A for all A, B  f(x).
3. (Zn,  ) is an abelian group

Question to revise 5. Define abelian group:
A group G is said to be abelian (or) commutative if Gbaabba  ,

Question to revise6. Show that the set N of all natural number
1,2,3,4,5….. is not a group with respect to addition.

1 1 �

� � 1

1 �



Addition is obviously a binary composition is N
i.e) N is closed with respect to addition
Also addition of natural number is an associative operation
But there exists no natural number e N such that
e + a = a = a + e a N
For the addition of number the number 0 is the identity and 0N.
(N, +) is not a group.
Question to revise7.
Let G be a group. Then show that Gaaa    )( 11

Solution
If e is the identity element, we have

eaa 1 .

 

aaaa

aea

aaaa

eaaaa

















1111

11

11111

11111

)()(

)(

)()(

)()(

Question to revise8. If G is a group then prove that the identity
element is unique
Solution
Suppose e and e’ are two identity elements of a group G.
We have eee  if e is an identity and eee  if e is an identity.
But ee  is a unique element of G. Therefore eeeee and  eee .
Hence the identity element is unique.

6.8 Infinite group
An infinite group is a group whose underlying set contains
an infinite number of elements.

Example: (Z, +), the group of integers with addition, and (R, +), the group of real
numbers with addition

6.9 Finite group
A finite group is a group whose underlying set is finite. Finite groups often arise
when considering symmetry of mathematical or physical objects, when those objects
admit just a finite number of structure-preserving transformations. Important
examples of finite groups include cyclic groups and permutation groups.

Question to revise9. Define finite and infinite group:
If in a group G the underlying set G consists of a finite number of distinct element
then the group is called a finite group otherwise an infinite group.

6.10 Order of an element

Definition.

https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Forgetful_functor
https://en.wikipedia.org/wiki/Infinite_set
https://en.wikipedia.org/wiki/Number
https://en.wikipedia.org/wiki/Element_(mathematics)
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Underlying_set
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Cyclic_group
https://en.wikipedia.org/wiki/Permutation_group


If G is a group and , the order of g is the smallest positive integer n such
that . If for any postive integer n, then g has infinite order.

In this definition, "1" denotes the identity element of G, and I'm using multiplicative
notation. Using additive notation, the definition would read: If G is a group
and , the order of g is the smallest positive integer n such that .
If for any postive integer n, then g has infinite order.

Recall that the order of a group is the number of elements in the group; the
preceding definition pertains to the order of an element, which is the smallest
positive power of the element which equals the identity. Don't confuse the two uses of
the word "order"!

Example. ( Orders of elements)

This is a group of order 6:

Find the orders of the elements of this group.

The operation is multiplication and the identity is 1. To find the order of an element, I
find the first positive power which equals 1.

1 has order 1 --- and in fact, in any group, the identity is the only element of order 1.

The element a has order 6 since , and no smaller positive power of a equals 1.

has order 3, because

has order 2, because

has order 3, because



has order 6. Note that

You can check that no smaller positive power of gives the identity.

Example.

What is the order of in , the group of real numbers under addition?

The element has infinite order: If I take positive multiples of , I'll never get 0:

Example. ( The group of quaternions)

This is the group table for Q, the group of quaternions. (Notice that the way i, j, and k
multiply is similar to the way the unit vectors , , multiply under the cross
product in .)

(a) Show that Q is not abelian.



(b) Find the orders of 1, -1, and i.

(a) Since but (for instance), Q is not abelian.

(b) The identity 1 has order 1, -1 has order 2, and i has order 4:

It's no coincidence that 1, 2, and 4 are divisors of 8, the order of the group. The order
of an element always divides the order of the group.

Definition.

If G is a group and , the order of g is the smallest positive integer n such
that . If for any postive integer n, then g has infinite order.

In this definition, "1" denotes the identity element of G, and I'm using multiplicative
notation. Using additive notation, the definition would read: If G is a group
and , the order of g is the smallest positive integer n such that .
If for any postive integer n, then g has infinite order.

Note

Recall that the order of a group is the number of elements in the group; the
preceding definition pertains to the order of an element, which is the smallest
positive power of the element which equals the identity. Don't confuse the two uses of
the word "order"!

Example. ( Orders of elements)

This is a group of order 6:



Find the orders of the elements of this group.

The operation is multiplication and the identity is 1. To find the order of an element, I
find the first positive power which equals 1.

1 has order 1 --- and in fact, in any group, the identity is the only element of order 1.

The element a has order 6 since , and no smaller positive power of a equals 1.

has order 3, because

has order 2, because

has order 3, because

has order 6. Note that

You can check that no smaller positive power of gives the identity.

Example.

What is the order of in , the group of real numbers under addition?

The element has infinite order: If I take positive multiples of ,

I'll never get 0:

Example. ( The group of quaternions)

This is the group table for Q, the group of quaternions. (Notice that the way i, j, and k
multiply is similar to the way the unit vectors , , multiply under the cross
product in .)



(a) Show that Q is not abelian.

(b) Find the orders of 1, -1, and i.

(a) Since but (for instance), Q is not abelian.

(b) The identity 1 has order 1, -1 has order 2, and i has order 4:

It's no coincidence that 1, 2, and 4 are divisors of 8, the order of the group. The order
of an element always divides the order of the group.

However, it doesn't work the other way: 8 is obviously a divisor of 8, but there's no
element of order 8 in Q.

Definition.

If G is a group with n elements and G has an element x of order n, G is said to
be cyclic of order n.

x is called a generator of the cyclic group, and the cyclic group consists of all powers
of x.

Thus, Q is not cyclic, since it has no elements of order 8.

It turns out the is an infinite cyclic group, since you can get every7 element by
taking multiples of 1 (or -1). I'll discuss cyclic groups in more detail later.

Question to revise10. Define order of the group:
The number of elements in a finite group is called the order of the group. We shall
denote the order of a group G by the symbol o(G).



Question to revise11. Find the order of each element of the
multiplicative group {1, -1, i, -i }.

o(1) = 1
o(-1) = 2
o(i) = 4
o(-i) = 4

Question to revise12. Given axa = b in G. Find x.

We have a x a = b
a-1(a x a) = a-1b
(a-1a) x a = a-1 b
x a = a-1 b
(x a) a-1 = (a-1b) a-1

x (a a-1) = a-1 b a-1

x e = a-1 b a-1

x = a-1 b a-1

Definition.
A group G is said to be abelian if ab = ba for all a, b G. In other words groups in
which the binary operation is commutative.
for example, in Z, Q, R, C it is understood that the binary operation is abelian under
usual addition

Question to revise13. Prove that if for every element a in a group G,
a2=e then G is an abelian group.
Let a and b be any two elements of the group G. Then ab is also an element of G.

(ab)2=e
(ab)(ab)=e
(ab)-1=ab
b-1a-1=ab
But aaeaaea  12

Similarly. bbebbeb  12

Therefore, we have ba = ab
G is an abelian group.

Question to revise14.Prove that a group G is an abelian if every
element of G except the identity element is of order two.



Identity element e is of order 1. But e2 = e
Since every other element is of order two, we have a2 = e a

G
G is abelian.

Question to revise15. Show that if every element of a group G is its
own inverse, then G is abelian.

Let a and b be any two elements of G.
Then ab is also an element of G.
(ab)-1=ab as it is given that every element is its own inverse.
Now (ab)-1=ab  b-1a-1=ab

ba=ab ( a-1=a, b-1=b)
Thus we have ab=ba a,b G
G is an abelian group.

What is addition modulo n?

Then addition modulo n on S is defined as follows. For a and b in S, take the usual
sum of a and b as integers, and let r be the element of S to which the result is
congruent (modulo n); the sum a+b Ξ (mod n) is equal to r.

Question to revise16. Define addition modulo m:

We define a new type of addition known as “addition modulo m” and written as a+mb
where a and b are any integers and m is fixed positive integer.
By definition we have, a+mb=r, 0 where r is the least non-negative
remainder when a+b is divided by m.

Residue class

The residue classes of a function mod are all possible values of
the residue . For example, the residue classes of (mod 6) are ,
since

are all the possible residues.

A complete residue system is a set of integers containing one element from each class,
so would be a complete residue system for (mod 6).

https://mathworld.wolfram.com/Residue.html
https://mathworld.wolfram.com/CompleteResidueSystem.html
https://mathworld.wolfram.com/CompleteResidueSystem.html


The residue classes prime to form a group under the binary multiplication
operation (mod ), where is the totient function (Shanks 1993) and the group is
classed a modulo multiplication group.

Question to revise17. Define Residue class:

Let I be the set of integers. Let m be any fixed positive integer. If a I, then the
residue class a or {a} or [a] = {x : :x I, x-a is divisible by m}

Question to revise18. Define order of an element of a group:
Suppose G is a group and the composition has been defined multiplicatively.By the
order of an element a G is meant the least positive integer n, if one exists,such that
an=e (the identity of G)
If there exists no positive integer n such that an=e, then we say that a is of infinite
order or of zero order. We shall use the symbol o(a) to denote the order of a.
Question to revise19.Prove that if a2=a, a G then a=e.
We have a2=a aa=a

aa=ae
a=e (by left cancellation law)

Unit -I
1. Define Binary operation:
2. Define .algebraic structure:
3. Define Semi group:
4. Define Group:
5. Define abelian group:
6. Show that the set N of all natural number 1,2,3,4,5….. is not a group with respect to addition.

7. If G is a group then show that Gaaa    )( 11

8. If G is a group then prove that the identity element is unique
9. Define finite and infinite group:
10. Define order of the group:
11. Find the order of each element of the multiplicative group {1,-1,i,-i}.
12. Given axa=b in G. Find x.
13. Prove that if for every element a in a group G, a2=e then G is an abelian group.
14. Prove that a group G is an abelian if every element of G except the identity element is of order

two.
15. Show that if every element of a group G is its own inverse, then G is abelian.
16. Define addition modulo m:
17. Define Residue class:
18. Define order of an element of a group:
19. Prove that if a2=a, a G then a=e.
20. Define cyclic groups:

https://mathworld.wolfram.com/Group.html
https://mathworld.wolfram.com/TotientFunction.html
https://mathworld.wolfram.com/Group.html
https://mathworld.wolfram.com/ModuloMultiplicationGroup.html
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1. Show that
i). The order of an element of a group is the same as that of its inverse
a-1.
ii). The order of any integral power of an element a cannot exceed the order
of a.
iii). Prove that If the element a of a group G is of order n then am= e iff n
is a divisor of m.

Proof:

I) The order of an element is same as that of its inverse in a group G.

To prove: O(a) = O(a-1) for every a in G.

Suppose, let O(a) = m and O(a-1) = n where m; n is the least positive integer.

Now, O(a) = m => am = e

=> (am)-1 = e-1 = e

=> (a-1)m = e

=>O(a-1) ≤ m i.e., n ≤ m ......(1)

Now, O(a-1) = n => (a-1)n = e

=> (an)-1 = e

=> ((an)-1)-1 = e-1 = e

=> an = e

=> O(a) ≤ n i.e., m ≤ n ......(2)

From (1) and (2) we have n = m i.e., O(a) = O(a-1)

ii) The order of any integral power of an element a cannot exceed the order of a.

Proof:

Let G be a group and a ℇ G.

Let O(a) = n and let ak be any integral power of a.

To prove: O(ak) = O(a)
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Now, an = e => ( an)k = ek

=> (ak)n = e

=> O(ak) is finite and ≤ n

=> O(ak) ≤ O(a)

iii).Prove that If the element a of a group G is of order n then am= e iff n
is a divisor of m.

Proof:

Given, O(a) = n ⇒ an = e.

To prove: a m = e ⇔ n|m.

Now a m = e and O(a) = n ⇒ n ≤ m

By division algorithm, ∃ q, r ∈ Z such that m = qn + r with 0 ≤ r < n

Now, a m = e ⇒ a qn+r = e

⇒ a qn a r = e

⇒ (a n ) q a r = e

⇒ e q a r = e

⇒ a r = e

⇒ r = 0 [∵ O(a) = n ⇒ n is the least positive integer such that a n = e]

∴ m = qn ⇒ n|m

Conversely: Suppose if n|m. To prove: a m = e.

Now, n|m ⇒ m = qn where q is any integer

⇒ a m = a qn ⇒ a m = (a n ) q

⇒ a m = e q

⇒ a m = e
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2. Prove that the orders of the elements a and bab- 1 are the same where a,
b are any two elements of a group.

Lemma :

If a and b are any two elements of a group G, then (bab-1)n = banb-1

for any positive integer n.

Proof:

Let (bab-1)n = banb-1......(1)

We prove (1) by induction on n.

For n = 1, we have bab-1 = ba1b-1 = bab-1 which is true.

Assume (1) is true for n = k, i.e., (bab-1)k = bakb-1

Consider, (bab-1)k+1 = bak+1b-1

=> (bab-1)k+1 = (bab-1)k(bab-1)1

=> (bab-1)k+1 = (bakb-1)(bab-1)

=> (bab-1)k+1 = bak(b-1b)ab-1 By associative law in G.

=> (bab-1)k+1 = bak(ea)b-1

=> (bab-1)k+1 = b(aka)b-1

=> (bab-1)k+1 = bak+1b-1

By induction on n,(1) holds for all positive integers.

Theorem : Let G be a group and a, b ∈ G then O(a) = O(bab- 1)

Proof: Let O(a) = n ⇒ an = e and O(bab- 1 ) = m

Since, (bab- 1)n = banb- 1 (By lemma )

⇒ (bab- 1)n = beb- 1

⇒ (bab- 1)n = bb- 1

⇒ (bab- 1)n = e

⇒ O(bab- 1 ) is finite and ≤ n i.e., m ≤ n ......(1)

Now, O(bab- 1 ) = m ⇒ (bab- 1)m = e
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⇒ bamb- 1 = e

⇒ bamb- 1 = bb- 1

⇒ am = e (By cancellation laws)

⇒ O(a) is finite and ≤ m i.e., n ≤ m ......(2)

From (1) and (2), we have n = m i.e., O(a) = O(bab- 1)

3. Prove that the order of ab is the same as that of ba where a and b are any
elements of a group.

Proof:

To prove : Let G be a group and a; b ℇ G then O(ab) = O(ba)

From the theorem above,Let G be a group and a, b ∈ G then O(a) = O(bab- 1)

we have O(a) = O(bab-1)

=> O(ab) = O[b(ab)b-1]

=> O(ab) = O[(ba)(bb-1)]

=> O(ab) = O(ba)

4. Show that if a, b are any two elements of a group G, then 222)( baab  if
and only if G is abelian.

(or)

Let G be a group and a; b ℇ G then G is abelian if and only if (ab)2 = a2b2.

Solution:

Suppose G is abelian then ab = ba Ɏ a; b ℇ G.

Consider, (ab)2 = (ab)(ab)

=>(ab)2 = a(ba)b By associative law in G

=> (ab)2 = a(ab)b G is abelian
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=>(ab)2 = (aa)(bb) By associative law in G

=> (ab)2 = a2b2

Conversely: suppose (ab)2 = a2b2

=>(ab)(ab) = (aa)(bb)

=> a(ba)b = a(ab)b By associative law in G

=> ba = ab By cancellation law in G

=> G is abelian. �

5. If a group G has four element show that it must be abelian.
(or) Prove that a group of order four is an abelian

Solution:

Let G be a group of order 4.

The order of an element of a group has to divide the order of the group,

n/m when o(a)m = e.

so there are two cases:

(1) either G has an element of order 4

or

(2) every non-identity element of G is of order 2.

Case(1) : If G has an element of order 4, then it is cyclic and so Abelian.

Case(2): Let G={1,a,b,c} with 1 the identity element and a2= b2= c2= 1.

Note that this means that every element is its own inverse.

Now whatever ab is, we must have (ab)2= 1.

It cannot be that ab=1 however, because (multiplying both sides on the right by b),
this would imply a=b in which case the order of G would be less than 4.
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So we have abab=1. Multiply by b on the right and a on the left to get ba=ab.

The same argument shows ca=ac and cb=bc, so G is Abelian in this case as well.

To understand G a little better, note that we cannot have ab=b, because then a=1, and
we cannot have ab=a, because then b=1, so it must be that ab=c.

So our group is

G={1,a,b,ab} with a2=1=b2 and ba=ab.

(This data implies that (ab)2=1 as well.)

If we let H={1,a} and K={1,b}, then H and K are subgroups
of G, HK=KH=G, and H∩K={1}. Under these conditions, we
write G=H⊕K. Since H and K are both isomorphic to Z2, we see that G ≅ Z2⊕Z2.

So the final result is that the only groups of order 4 (up to isomorphism)
are Z4 and Z2⊕Z2.

6. i) Prove that every cyclic group is an abelian group.
Or

Show that every cyclic group is Abelian.

Solution: Suppose that G is a cyclic group that is generated by the element g.

Let x and y be arbitrary elements of G. we must show that xy = yx.

Since G is generated by g, there must exist integers r and s such that

x = gr , y = gs . But then xy = grgs = gr+s = gsgr = yx .

ii)Prove that if a is a generator of a cyclic group G, then a-1 is also a generator
of G.

Proof:

Let G be a infinite cyclic group generated by element a. i.e., G =< a >= {a, a2,
a3,………., an, ……..}

Let g ℇ G => n ℇ Z such that g = an.



and

7

Now, g = (a-1)-n = (a-1)m where m = -n.

Hence, g = (a-1)m Ɏ g ℇ G.

=> a-1 is also a generator of G.

7. Prove that every group of prime order is cyclic.

Let p be a prime and G be a group such that |G| = p. Then G contains more than
one element. Let g∈G such that g ≠ eG. Then ⟨ g⟩ contains more than one
element. Since ⟨ g⟩ ≤G, by Lagrange’s theorem, |⟨ g⟩ | divides p.
Since |⟨ g⟩ |>1 and |⟨ g⟩ | divides a prime, |⟨ g⟩ |=p=|G|. Hence, ⟨ g⟩ =G. It
follows that G is cyclic.
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Unit - II- Abstract algebra

TOPICS: Subgroups - Cosets and Lagrange’s theorem- normal subgroups – quotient

group Ishomomorphism.

Chapter1 - Sub-Groups

Definition :

Let G be a group under a binary operation *. Let H be a non-empty subset of G. If H

is also a group under the same binary operation *, then H is called a subgroup of G.

Remark :

The sets {e} and { G} are subgroups of G under the same binary operation. These

subgroups are trivial subgroups of G or improper subgroups of G. All other

subgroups of G are called non-trivial subgroups or proper subgroups of G.

Examples

{.Z, +} is a sub-group of (Q, +), (R, +) and (C, +).

2. (Q, +) is a subgroup of (R, +) and (C, +)

3. (R, +) is a subgroup of (C, +)

Properties of subgroups

Property 1

Let H be a sub-group of a group G. Prove that the identity element of

subgroup H is the same as the identity element of the group.

Proof:

Let e be the identity element in G and be the identity element in H.

Let a be any element in H. Then a ∈G

Since a ∈G,a•e = a ….(1)
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Since a ∈ H, a • = a …….(2)

From (1) and (2), a • e = a •

∴By left cancellation law, e =

Hence both H and G have the same identity element.

Property 2

Let H be a subgroup of G. Prove that the inverse of an element a ∈ H is the

same as the inverse of a ∈G (Or)

The inverse of an element in a subgroup is the same as the inverse of that

element in the group.

Proof :

Let a ∈ H , then a ∈ G .

Let a' and a" be the inverses of a in H and G respectively.

Then a • a' = a' • a = e ….(1)

a • a" = a" • a = e

∴a • a' = a • a"

Hence by left cancellation law, a' = a"

∴ The inverse of a in H is the same as the inverse of a in G.

Criterion for a subgroup :

In order to prove that a subset Hof a group G is a subgroup of G, we have to test

whether H also satisfies the axioms of a group. Now we give two different sets of

criteria for a subset to be a subgroup.

Property 3
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Let H be a subset of G. H is a subgroup of G if and only if for any two elements

a* b' ∈ H

Proof :

Case 1 : Condition is necessary :

Given H is a subgroup of G, we have to prove that a • b'∈ H for all a, b ∈ H .

Since H is a sub-group, for b ∈ H , we have b' ∈ H .By closure property in H,

.∴condition a, b' ∈ H ⇒,a • b' ∈ H

Case 2 : Condition is sufficient :

Given for any two elements a, b ∈ H , we have a •b'∈ H . We have to prove that H

is a subgroup of G.

Proof:

Given for any two elements a,b’ ∈H, a. b', ∈H. Since a,a'∈H, a•a' ∈H

i.e., e ∈ H

∴Identity element exists in H.

Since e, a ∈ H, we have e• a' ∈ H i.e., a' ∈ H

∴For each element a, its inverse a' ∈ H

a, b ∈H, a.b' ∈ H

Since a, b' ∈H, a•(b')' ∈H i.e., a•b∈H

∴The set is closed.

Associative law is true in H since H is a subset of C and associative law is

true in G.

∴ H is a group and hence is a subgroup of G.
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Property 4

A non-empty subset H of a group (G, *) is a group of G if' and only if

(i) a, b ∈ H ⇒a*b E H

(ii) a ∈ H ⇒a' ∈H (Or)

A non-empty subset H of a group G is a subgroup of G and only if (1) the set H

is closed (2) each element of H possesses inverse in H.

Proof:

Case 1 : Conditions are necessary :

Given His a subgroup of G. To prove that conditions (1) and (2) are satisfied.

Since H is a group, by closure property, for any two elements a, b ∈ H ,

we have a.b ∈H.

∴Condition (1) is satisfied. Since His a group by inverse axiom, for a ∈ H, a' ∈ H

∴Condition (2) is satisfied.

Case 2 : Conditions are sufficient :

Given (1) a•b ∈ H for all a, b ∈H

(2) a' ∈ H for all a ∈H

To prove : H is a subgroup of G.

Condition (1) States that closure property is true in H.

(2) Associative law is true in H since it is true in G and H is a subset of G.

Since a' ∈ H for all a ∈ H and closure property is true in H, a • a' ∈ H

i.e., e ∈H . Hence identity exists in H. By condition (2) all elements in H
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possess inverse in H. ∴H is a group and hence a subgroup of G.

Property 5

If H and K are subgroups of G, show that H ⋂ K is a subgroup of G.

Proof:

Let a, b ∈ H ⋂ K

Then a, b ∈ H and a, b ∈ K.

Since H is a subgroup of G and a, b ∈ H ,

we have a • b' ∈H (Property 3)

Since K is a subgroup of G and a, b ∈ H,

we have a • b'∈ K (Property 3)

Since a • b' ∈ H and a•b' ∈ K , we have a•b` ∈ H ⋂ K

For a, b ∈ H ⋂ K , we have a•b'∈H ⋂ K

Hence H ⋂ K is also a subgroup of G.

Property 6

Let G be a group and a e G then H = { ∣ n ∈ Z} is a subgroup of G.

Proof:

∈H for all n ∈Z

a ∈ H since 1 ∈ Z

∴H is non-empty. Also since a ∈ G and G is a group.

∈G for all n ∈Z

∴ H is non-empty subset of G.
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= and y = for some integers r, s ∈Z . Then x, y ∈ H.

Now x• = ( = = and r - s ∈Z

x. ∈ H and hence H is a sub-group of G.

Example

Show that in the group of symmetries of the equilateral triangle, the set

H =( , is a subgroup.

Solution :

+

From the above table we see that the set is closed and the set operation is binary.

Associative law :

The composition of functions is always associative.

Identity :

is the identity element

Inverse :

The inverse of is

The inverse of is

The inverse of is

∴H = { } is a group. Since H is a subset of , H is a subgroup of
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Chapter2 - Coset

If H is a subgroup of G, you can break G up into pieces, each of which looks like H:

These pieces are called cosets of H, and they arise by “multiplying” H by elements of

G.

Definition.

Let G be a group and let H < G. A left coset of H in G is a subset of the form

gH = {gh | h ∈ H} for some g ∈ G.

The element g is a representative of the coset gH. The collection of left cosets is

denoted G/H.Likewise, a right coset is a subset of the form

Hg = {hg | h ∈ H} for some g ∈ G.

The set of right cosets is denoted H\G.

Thus, the left coset gH consists of g times everything in H; Hg consists of everything

in H times g.

Example. (Listing the elements of cosets)

(a) List the elements of U28 and the elements of the cyclic subgroup generated by 9.

(b) List the elements of the cosets of (9) in U28.

(a) U28 = {1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27}.
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(9) = {1, 9, 25}.

(b) The subgroup is always a coset. I’ll list that first:

(9) = {1, 9, 25}.

Take an element of U28 which is not in the subgroup — say 3. Multiply the subgroup

by the element:

3 ·(9) = 3 · {1, 9, 25} = {3 · 1, 3 · 9, 3 · 25} = {3, 27, 19}.

Take an element of U28 which is not in either of the two known cosets — say 5.

Multiply the subgroup by the element:

5 ・ (9) = 5 ・ {1, 9, 25} = {5 ・ 1, 5 ・ 9, 5 ・ 25} = {5, 17, 13}.

Notice that all the cosets have 3 elements — the same as the number of elements in

the subgroup.

At this point, there are only 3 elements which aren’t in any of the known cosets.

These elements make

up the last coset: {11, 15, 23}. You can check that

11 ・ (9) = {11, 15, 23}.

3 represents the coset 3 ・ h9i, but a given coset can be represented by any of its

elements. For example,

19. (9) = 19. {1, 9, 25} = {19 .1, 19. 9, 19. 25} = {19, 3, 27} = 3 ・(9).

Example. (Listing the elements of cosets)

List the elements of the cosets of 2Z in Z.

Z/2Z consists of two cosets: the even numbers 2Z and the odd numbers. Explicitly,
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0 + 2Z = {. . . ,−4,−2, 0, 2, 4, . . .} and 1 + 2Z = {. . . ,−3,−1, 1, 3, . . .}. Notice that

when the operation in the group is +, a coset of a subgroup H is written a + H.

Example. (Listing the elements of cosets)

List the elements of the cosets of the subgroup {1,−1} of the group of quaternions.

Here is the table for the group of quaternions:

Consider the subgroup {1,−1}. Its cosets are

1 ・{1,−1} = {1,−1}, (−1)・{1,−1} = {−1, 1} = {1,−1},

i ・{1,−1} = {i,−i}, (−i)・{1,−1} = {−i, i} = {i,−i},

j ・{1,−1} = {j,−j}, (−j)・{1,−1} = {−j, j} = {j,−j},

k ・{1,−1} = {k,−k}, (−k)・{1,−1} = {−k, k} = {k,−k}.

There are four distinct cosets. Notice that 2 ・ 4 = 8. This is a special case of

Lagrange’s theorem:

The order of a subgroup times the number of cosets of the subgroup equals the order

of the group.
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Example. (Identifying a set of cosets with another set)

Show that the set of cosets R / Z can be identified with S1, the group of complex

numbers of modulus 1 under complex multiplication.

The cosets R / Z are x + Z where 0 ≤ x < 1.

Thus, there is one coset for each number in the half-open interval [0, 1).

On the other hand, you can “wrap” the half-open interval around the circle S1 in the

complex plane:

Use f(t) = e2it, 0 ≤ t < 1. It’s easy to show this is a bijection by constructing an inverse

using the logarithm.

Thus, there is a bijection from the set of cosets R/Z to the circle S1.

In fact, this is an example of an isomorphism of groups.

Theorem. Let G be a group and let H < G. The left cosets of H in G form a

partition of G.

Proof.

we need to show that the union of the left cosets is the whole group, and that different

cosets do not overlap.

Let g ∈ G. Since 1 ∈ H, it follows that g ・ 1 = g is in gH. This shows that every

element of G lies in some coset of H, so the union of the cosets is all of G.

Next, suppose aH and bH are two cosets of H, and suppose they are not disjoint. I

must show they’re identical: aH = bH. As usual, I can show two sets are equal by

showing that each is contained in the other.

Since aH and bH are not disjoint, I can find an element g ∈ aH ∩ bH.

Write g = ah1 = bh2 for h1, h2 ∈ H. Then a = bh2h1−1

Now let ah ∈ aH. Then ah = bh2h1−1 h.

The element on the right is in bH, since it is b times something in H. Therefore,
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ah ∈ bH, and aH ⊂ bH.

By symmetry, bH ⊂ aH, so aH = bH.

Theorem. Any two left cosets have the same number of elements.

Proof.

Let H be a subgroup of a group G, and let a, b ∈ G. I must show that aH and bH

have the same number of elements. By definition, this means that I must construct a

bijective map from aH to bH.

An element of aH looks like ah, for some h ∈ H. So it is tempting to simply define

f : aH → bH by f(ah) = bh.

But how do you know this is well-defined? How do you know that the same element

of aH might not be expressed as both ah and ah′, where h and h′ are different

elements of H?

Fortunately, this can’t happen; if ah = ah′, then

a−1ah = a−1ah′, so h = h′.

Thus, it’s legitimate for me to define a function f as above.

Likewise, I can define g : bH → aH by

g(bh) = ah for bh ∈ bH.

This is well-defined, just as f was.

Since f and g are clearly inverses, f (or g) is a bijection, and aH and bH have the same

number of elements.

Definition. If G is a group and H < G, |G/H| is called the index of H in G, and is

denoted (G : H).
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The way we’ve defined it, the index of H in G is the number of left cosets of H. It

turns out that this is the same as the number of right cosets.

Theorem. (Lagrange’s theorem) Let G be a finite group and let H be a subgroup

of G. Then (G : H) =
||
||

H
G

Proof.

The cosets of H partition G into (G : H) pieces, and each piece contains |H| elements.

So the total number of elements in the (G : H) pieces is (G : H) ・ |H|, but this is all

of G:

(G : H) ・ |H| = |G|.

Now divide both sides by |H|.

Note that this result implies that the order of a subgroup divides the order of the

group. Thus, a group of order 14 could have subgroups of order 1, 2, 7, or 14, but

could not have a subgroup of order 5.

Example. (A specific example of Lagrange’s theorem) Verify Lagrange’s theorem

for the subgroup H = {0, 3} of Z6.

The cosets are

0 + H = {0, 3}, 1 + H = {1, 4}, 2 + H = {2, 5}.

Notice there are 3 cosets, each containing 2 elements, and that the cosets form a

partition of the group.

Example. (A specific example of Lagrange’s theorem) List the elements of the

cosets of )2,2(h in Z4 × Z6.

First, list the elements of the subgroup:

)2,2( = {(0, 0), (2, 2), (0, 4), (2, 0), (0, 2), (2, 4)}.



14

The subgroup is a coset.

The subgroup has 6 elements and the group has 24. By Lagrange’s theorem, there are

4 cosets.

(1, 1) isn’t in the subgroup; add it to the subgroup:

(1, 1) + )2,2( = {(1, 1), (3, 3), (1, 5), (3, 1), (1, 3), (3, 5)}.

(2, 1) isn’t in either of the known cosets; add it to the subgroup:

(2, 1) + )2,2( = {(2, 1), (0, 3), (2, 5), (0, 1), (2, 3), (0, 5)}.

The remaining elements make up the fourth coset. I can find them by noting that (1, 2)

isn’t in the three known cosets, so the fourth coset is represented by (1, 2):

(1, 2) + )2,2( = {(1, 2), (3, 4), (1, 0), (3, 2), (1, 4), (3, 0)}.

Notice that there are 4 cosets, each containing 6 elements, and the cosets form a

partition of the group.

Corollary. Every group of prime order is cyclic.

Proof.

Suppose G is a group of order p, where p is prime. Let g ∈ G, g 6= 1. hgi is a

subgroup of G, and since g  1, |(g)|  1.

But |(g)| divides |G| by Lagrange’s theorem, and the only positive numbers which

divide |G| = p are 1 and p. Therefore, |(g)| = p, which means that (g) is all of G. That

is, G is cyclic with generator g.

For example, this means that the only group of order 17 is the cyclic group of order

17.

I noted earlier that the number of left cosets equals the number of right cosets; here’s

the proof.

Proposition.
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Let G be a group, H < G. The set of left cosets G/H may be put in 1-1 correspondence

with the set of right cosets H\G.

Proof.

Define Ø : G/H → H\G by Ø(gH) = Hg−1. I need to show Ø- is well-defined.

Suppose aH = bH. Then a = a ・ 1 ∈ aH = bH, so a = bh for some h ∈ H. Then

Ø(aH) = Ha−1 = H(bh)−1 = Hh−1b−1 = Hb−1 = Ø(bH).

Next, define  : H\G → G/H by  (Hg) = g−1H. A computation similar to the

one I just did shows is well Ø defined.  and are inverses, so either one gives a

bijection of G/H with H\G.

While there are the same number of left and right cosets, the left and right cosets may

be different as sets. In fact, if the left and right cosets are the same as sets, the

subgroup is said to be normal. It’s a very important condition on a subgroup, since it

will allow us to turn the set of left (or right) cosets into a quotient group.

Example.

(A subgroup whose left and right cosets are different) List the elements of the left

cosets and the right cosets of the subgroup {id, (1 2)} of S3.

The left cosets are

{id, (1 2)}, (1 3){id, (1 2)} = {(1 3), (1 2 3)}, (2 3){id, (1 2)} = {(2 3), (1 3 2)}.

The right cosets are

{id, (1 2)}, {id, (1 2)}(1 3) = {(1 3), (1 3 2)}, {id, (1 2)}(2 3) = {(2 3), (1 2 3)}.

The left and right cosets aren’t the same, though there are the same number of left

and right cosets.

Chapter 3 Lagrange's Theorem

Proposition
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Let H be a subgroup of G with g∈G and define a map ϕ:H→gH by .ϕ(h)=gh. The

map ϕ is bijective; hence, the number of elements in H is the same as the number of

elements in gH.

Proof:

We first show that the map ϕ is one-to-one.

Suppose that ϕ(h1)=ϕ(h2) for elements h1,h2∈H.

We must show that h1=h2, but ϕ(h1)=gh1 and ϕ(h2)=gh2. So ,gh1=gh2, and by left

cancellation .h1=h2. To show that ϕ is onto is easy. By definition every element

of gH is of the form gh for some h∈H and ϕ(h) = gh.

Theorem : Lagrange.

Let G be a finite group and let H be a subgroup of .G. Then |G| / |H| = [G:H] is the

number of distinct left cosets of H in G. In particular, the number of elements

in H must divide the number of elements in G.

Proof

The group G is partitioned into [G:H] distinct left cosets. Each left coset

has |H| elements; therefore, |G|=[G:H]|H|.

Corollary

Suppose that G is a finite group and .g∈G. Then the order of g must divide the

number of elements in G.

Corollary

Let |G|=p with p a prime number. Then G is cyclic and any g∈G such that g≠e

is a generator.

Proof
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Let g be in G such that .g≠e. Then by Corollary 6.11, the order of gg must divide

the order of the group. Since |⟨ g⟩ |>1, it must be p.. Hence, g generates .G.

Corollary

Let |G|=p| with p a prime number. Then G is cyclic and any g∈G such

that g≠e is a generator.

Proof

Let g be in G such that g≠e. Then by Corollary ,

Corollary :Suppose that G is a finite group and .g∈G. Then the order of g must

divide the number of elements in G.

the order of g must divide the order of the group. Since |⟨ g⟩ | >1, it must

be p. Hence, g generates G.

Corollary

Let H and K be subgroups of a finite group G such that G⊃H⊃K.. Then

[G:K]=[G:H][H:K].

Proof

Observe that

[G:K] = |G| / |K| = |G| / |H|⋅ |H| / |K| = [G:H][H:K]..

Remark : The converse of Lagrange's Theorem is false.

The group A4 has order 12; however, it can be shown that it does not possess a

subgroup of order 6. According to Lagrange's Theorem, subgroups of a group of

order 12 can have orders of either 1,2, 3, 4, or 6. However, we are not guaranteed that

http://abstract.ups.edu/aata/section-lagranges-theorem.html
http://abstract.ups.edu/aata/section-lagranges-theorem.html
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subgroups of every possible order exist. To prove that A4 has no subgroup of

order 6, we will assume that it does have such a subgroup H and show that a

contradiction must occur. Since A4 contains eight 3-cycles, we know that H must

contain a 3-cycle. We will show that if H contains one 3-cycle, then it must contain

more than 6 elements.

Proposition.

The group A4 has no subgroup of order 6.

Proof

Since [A4:H] = 2, there are only two cosets of H in A4. In as much as one of the cosets is H itself,

right and left cosets must coincide; therefore, gH=Hg or gHg−1=H for every g∈A4.. Since there are

eight 3-cycles in A4, at least one 3-cycle must be in H. Without loss of generality, assume

that (123) is in H. Then (123)-1=(132) must also be in H. Since ghg−1∈H for all g∈A4 and

all h∈H and

(124)(123)(124)-1=(124)(123)(142)=(243)

(243)(123)(243)-1=(243)(123)(234)=(142)

we can conclude that H must have at least seven elements

(1),(123),(132),(243),(243)−1=(234),(142),(142)−1=(124).

Therefore, A4 has no subgroup of order 6.

Theorem

Two cycles τ and μ in Sn have the same length if and only if there exists

a σ∈Sn such that μ=στσ−1.

Proof

Suppose that
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τ=(a1,a2,…,ak)

μ=(b1,b2,…,bk)

Define σ to be the permutation

σ(a1)=b1

σ(a2)=b2

⋮

σ(ak)=bk

Then μ=στσ−1.

Conversely, suppose that τ=(a1,a2,…,ak) is a k-cycle

and σ∈Sn. If σ(ai)=b and σ(a(imodk)+1)=b′, then μ(b)=b′. Hence,

μ=(σ(a1),σ(a2),…,σ(ak)).

Since σ is one-to-one and onto, μ is a cycle of the same length as τ.

Chapter 4 - Normal subgroups

Definition A subgroup H of the group G is called a normal subgroup if

ghg-1 H for all h H and g G.

Proposition Let H be a subgroup of the group G. The following conditions are

equivalent:

(1) H is a normal subgroup of G;

(2) aH = Ha for all a G;

(3) for all a,b G, abH is the set theoretic product (aH)(bH);
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(4) for all a,b G, ab-1 H if and only if a-1b H.

Example Any subgroup of index 2 is normal.

Factor groups

Proposition Let N be a normal subgroup of G, and let a,b,c,d G.

If aN = cN and bN = dN, then abN = cdN.

Theorem If N is a normal subgroup of G, then the set of left cosets of N forms a

group under the coset multiplication given by aNbN = abN for all a,b G.

Definition If N is a normal subgroup of G, then the group of left cosets of N in G is

called the factor group of G determined by N. It will be denoted by G/N.

Example . Let N be a normal subgroup of G. If a G, then the order of aN in G/N is

the smallest positive integer n such that an N.

Chapter 5- Quotient groups

Now that we've learned a bit about quotients, we should build more examples.

Integers mod n, Again

When N is a normal subgroup of a group G, the quotient group G/N is obtained by

"collapsing the elements of N to the identity." More precisely, the set G/N is

https://brilliant.org/wiki/normal-subgroup/
https://brilliant.org/wiki/group-theory-introduction/
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defined as the set of equivalence classes where two elements g, h are considered

equivalent if the cosets gN and hN are the same.

By far the most well-known example is G = Z, N = nZ, where n is some positive

integer and the group operation is addition. Then G/N is the additive group Zn of

integers modulo n. So the quotient group construction can be viewed as a

generalization of modular arithmetic to arbitrary groups. In fact, the quotient

group G/N is read "G mod N."

Definition

The quotient G/H is a well-defined set even when H is not normal.

Let G be a group and H a subgroup. Then G/H is the set of left cosets, gH =

{ gh : h ∈ H }, as g runs over the elements of G.

This set is used in the proof of Lagrange's theorem, for instance. In fact, the proof of

Lagrange's theorem establishes that if G is finite, then |G/H| = |G|/|H|.

Note that g1​ H = g2​ H ⇔ H = g1−1 ​ g2​ H ⇔ g1−1​ g2​ ∈H.

If N is normal, then the set G/N has a natural group structure; because

Ng2 ​ = g2​ N

.(g1N)(g2N) = g1g2NN = g1g2N.

This gives a formula for multiplying cosets. Another way to express this formula is as

follows:

https://brilliant.org/wiki/lagranges-theorem/
https://brilliant.org/wiki/modular-arithmetic/
https://brilliant.org/wiki/lagranges-theorem/
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If N is a normal subgroup of G, then the function π: G → G/N given by π(g) =

gN is a group homomorphism.

Representatives and Notation

The definition of the quotient group uses cosets, but they are somewhat unwieldy to

work with. It is often easier to denote the coset gN by the notation g ;

then 2121 gggg  as expected. The important point is that this is true no matter

which representatives g1​ ,g2​ are chosen: if 11 ' gg  ​ and 22 ' gg  ​ ​ , then

Nggngngggngnggg 21221
1

221221121 ))(''   , so 2121 '' gggg  . Another way to

say this is as follows: the coset containing the product of two coset representatives is

independent of the choice of representatives.

This is not true if N is not normal.

Let G = S3​ , the symmetric group on three symbols. Let H be the two-element

subgroup generated by the transposition (12). Then G/H consists of three cosets:

H={id,(12)}

(13)H={(13),(123)}

(23)H={(23),(132)}.

Since H is not normal, it does not inherit the group structure from G; in other words,

the product of two coset representatives will land in a coset that is not independent of

the choice of representatives.

For example, taking id∈H and (13)∈(13)H, the product of these two

representatives is (13), which is in .(13)H. But instead taking (12) ∈ H and (13)

∈ (13)H, we find (12)(13) = (132) ∈ (23)H.

Example: Integers mod 6

https://brilliant.org/wiki/homomorphism/
https://brilliant.org/wiki/symmetry-group/
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When G = Z (with group law given by addition) and N = 6Z, the quotient G/N is

the set of cosets of .N. The coset representatives that are usually chosen

are 0,1,2,3,4,5. So for instance the coset 1+6Z is abbreviated 1∈Z6​ , and

Z6​ ={0,1,2,3,4,5}.

The addition in Z6​ is as expected: baba  ​ . If a + b >

6, subtracting 6 will give the coset representative in the range {0,1,2,3,4,5}. For

example, 2853  . Here 28  because 8−2∈6Z, so 8 + 6Z = 2 + 6 Z.

First Isomorphism Theorem

The three fundamental isomorphism theorems all involve quotient groups. The most

important and basic is the first isomorphism theorem; the second and third theorems

essentially follow from the first. Here are some examples of the theorem in use.

(First Isomorphism Theorem) A group homomorphism ϕ : G→H induces an

isomorphism ϕ​ :G/ker(ϕ)→im(ϕ) defined naturally by )(g = ϕ(g).

The complex numbers z such that ∣z∣=1 form a group under multiplication. Call

this group C (for unit circle). Show that R/Z ≅ C, where R and Z denote the additive

groups of real numbers and integers, respectively.

Consider the function ϕ : R→C given by ϕ(r) = e2πir. Then ϕ is clearly surjective,

because every complex number with absolute value 11 can be written as eiθ for some

real number \thetaθ (by Euler's formula). The kernel of \phiϕ is the set of real

numbers r such that ,e2πir = 1, i.e. cos(2πr) = 1 and sin(2πr) = 0. This happens if and

only if rr is an integer, so ker(ϕ) = Z.

The result follows directly from the first isomorphism theorem. ​

https://brilliant.org/wiki/group-isomorphism-theorems/
https://brilliant.org/wiki/complex-numbers/
https://brilliant.org/wiki/eulers-formula/
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Another example of the first isomorphism theorem is an appealingly nontrivial

example of a non-abelian group and its quotient.

Consider the symmetric group S4​ on four symbols. It permutes the vertices of this

tetrahedron

:

Disjoint pairs of edges are preserved. [1]There are three pairs of disjoint edges: the

two purple edges, the blue/green pair, and the red/yellow pair. Any permutation of

the vertices will permute the edges in such a way as to move these pairs onto each

other. For instance, a transposition of the red and yellow vertices will fix the purple

edge pair, but the red/yellow pair will swap places with the blue/green pair.

So any permutation in S4​ will have an associated permutation of these three

objects (the edge pairs). This gives a function ϕ : S4​ →S3​ . It is a

homomorphism (essentially tautologically, since the group operation on both sides is

just composition of functions). Its kernel V4​ has four elements in it, consisting of

the identity and the three double transpositions. (Any double transposition will fix

both edges in one pair, and will swap the edges in the other two pairs. For example,

swapping the yellow and red vertices and then swapping the blue and green vertices

will leave the purple edge pair unchanged, but will swap the blue and green edges,

and the yellow and red edges. The three pairs stay in the same place, even though the

two edges in some pairs may have switched places.) And it is not hard to show

that ϕ is surjective.

So the first isomorphism theorem gives an isomorphism ϕ​ :S4​ / V4​ ≅ S3​ .

https://brilliant.org/wiki/quotient-group/
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Chapter 6- Group homomorphisms

3.7.1. Definition Let G1 and G2 be groups, and let : G1 -> G2 be a function.

Then is said to be a group homomorphism if

(ab) = (a) (b) for all a,b G1.

Example 3.7.1. (Exponential functions for groups) Let G be any group, and let a be

any element of G. Define : Z -> G by (n) = an, for all n Z. This is a group

homomorphism from Z to G.

If G is abelian, with its operation denoted additively, then we define : Z -> G by (n)

= na.

Example 3.7.2. (Linear transformations) Let V and W be vector spaces. Since any

vector space is an abelian group under vector addition, any linear transformation

between vector spaces is a group homomorphism.

3.7.2. Proposition If : G1 -> G2 is a group homomorphism, then

(a) (e) = e;

(b) ( (a))-1 = (a-1) for all a G 1;

(c) for any integer n and any a G1, we have (an) = ( (a))n;

(d) if a G1 and a has order n, then the order of (a) in G2 is a divisor of n.

Example 3.7.4. (Homomorphisms defined on cyclic groups) Let C be a cyclic group,

denoted multiplicatively, with generator a. If : C -> G is any group homomorphism,

and (a) = g, then the formula (am) = gm must hold. Since every element of C is of
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the form am for some integer m, this means that is completely determined by its

value on a.

If C is infinite, then for an element g of any group G, the formula (am) = gm defines a

homomorphism.

If |C|=n and g is any element of G whose order is a divisor of n, then the formula (am)

= gm defines a homomorphism.

Example 3.7.5. (Homomorphisms from Zn to Zk) Any homomorphism : Zn -> Zk is

completely determined by ([1]n), and this must be an element [m]k of Zk whose order

is a divisor of n. Then the formula ([x]n) = [mx]k, for all [x]n Zn, defines a

homomorphism. Furthermore, every homomorphism from Zn into Zk must be of this

form. The image (Zn) is the cyclic subgroup generated by [m]k.

3.7.3 Definition Let : G1 -> G2 be a group homomorphism. Then

{ x G1 | (x) = e }

is called the kernel of , and is denoted by ker( ).

3.7.4 Proposition Let : G1 -> G2 be a group homomorphism, with K = ker( ).

(a) K is a normal subgroup of G.

(b) The homomorphism is one-to-one if and only if K = {e}.

3.7.6 Proposition Let : G1 -> G2 be a group homomorphism.

(a) If H1 is a subgroup of G1, then (H1) is a subgroup of G2.

If is onto and H1 is normal in G1, then (H1) is normal in G2.
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(b) If H2 is a subgroup of G2, then

-1 (H2) = { x G1 | (x) H2 }

is a subgroup of G1.

If H2 is normal in G2, then -1(H2) is normal in G1.

3.8.6. Proposition Let N be a normal subgroup of G.

(a) The natural projection mapping : G -> G/N defined by (x) = xN, for all

x G, is a homomorphism, and ker( ) = N.

(b) There is a one-to-one correspondence between subgroups of G/N and

subgroups of G that contain N. Under this correspondence, normal subgroups

correspond to normal subgroups.

Example If m is a divisor of n, then Zn / mZn Zm.

3.8.8. Theorem [Fundamental Homomorphism Theorem] Let G1, G2 be groups.

If : G1 -> G2 is a group homomorphism with K = ker( ), then

G1/K (G1).

3.8.9. Definition The group G is called a simple group if it has no proper nontrivial

normal subgroups.
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QUESTION AND ANSWER FOR PRACTICE

1. Define subgroup
A non-empty subset H of a group G is said to be a subgroup of G if the composition
in G is also a induced composition in H and for this induced composition H itself is a
group.

2. Define improper subgroup:
A subgroup containing only one element is identity element {e} and G are known

as improper (or) trivial subgroups.
3. Define proper subgroup

A subgroup other than {e} and G are known as proper subgroup.
4. Give two examples of a subgroup

Multiplication group {1,-1} is a subgroup of the group {1,-1,i,-i}.
The addition group of even integers is a subgroup of the addition group of all
integers.

5. Give an example in which H is a subset of a group G and H-1=H but H is not a
subgroup of G

6. Prove that if H is any subgroup of G then HHH 
Let 21,hh be any element of HH where HhHh  21 , . Since H is a
subgroup of G , therefore

HHH
HhhHh


 2121 h 

Now let h be any element of H. Then we can write heh  where e is the
identity of G. Now HHhe , since HeHh  , . Thus HHH 
Hence HH = H.

7. Define right coset
Suppose G is a group and H is any subgroup of G. Let a be any element
of G. Then the set }:{ HhhaHa  is called a right coset of H in G
generated by a.

8. If G is the additive group of integers and H is the subgroup of G obtained on
multiplying the elements of G by 3 then find the right coset decomposition of
G with respect to H.

)2()1(  HHHG .
9. Define index of a subgroup in a group

If H is a subgroup of a group G, the number of distinct right(left) cosets of H
in G is called the index of H in G and is denoted by )(HiG

10. State Lagrange’s theorem
The order of each subgroup of a finite group is a divisor of the order of the

group.
11. Define Normal subgroup

A subgroup H of a group G is said to be a normal subgroup of G if for every

Gx and for every HxhxHh  1, .

12. Define improper normal subgroup
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Every group G possesses at least two normal subgroups namely G itself and the
subgroup consisting of the identity element e alone. These are called improper
subgroups.

13. Define simple group.
A group having no proper normal subgroups is called a simple group.

14. Show that every subgroup of an abelian group is normal.

Let G be abelian group and H be. a subgroup of G. Let x be any element of G and h

any element of H, we have Hhehhxxxhx   11 .

Thus HxhxHhGx  1, . Hence H is normal in G.

15. Define normalizer of an element of a group.

If Ga , then N(a), the normalizer of a in G is the set of all those element of G
which commute with a. Symbolically xa}ax : {)(  GxaN .

16. Define Quotient group

If G is a group and H is a subgroup of G then the set of cosets of H in G
is a group with respect to multiplication of cosets. It is called the Quotient group
G/H in H.

17. Show that every quotient group of an abelian group is abelian
Let G be an abelian group and H be a subgroup of G. Then H is normal subgroup of
G. If Gba , then HbHa, are any two elements of G/H. We have,

))((
))((

HaHb
HbaHabHbHa




.

Therefore G/H is abelian.
18.Define onto homomorphism of groups

A mapping f from a group G onto a group G is said to be a homomorphism of G
onto G if Gba,)()()(  bfafabf . Also then G is said to be a
homomorphic image of G.

19.If f is a homomorphism of a group G into a group G’ then eef )( where e is the
identity of G and e is the identity of G 
Let Ga . Then Gaf )( . We have

)()(
)(

)()(

efaf
aef
afeaf





Now G’ is a group . Therefore
)()()( efafeaf 

)(efe 
Gba,)()()(  bfafabf

20. Define kernel of a Homomorphism
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If f is a homomorphism of a group G into a group G  , then the set K of all those
elements of G which are mapped by f onto the identity e of G  is called the
kernel of the homomorphism f.
Thus if f is a homomorphism of G into G  , then K is the kernel of f if

G ofidentity   theis )(:{  exfGxK

All the best

http://abstract.ups.edu/aata/section-lagranges-theorem.html


Unit-II

1. Define subgroup
A non-empty subset H of a group G is said to be a subgroup of G if the composition
in G is also a induced composition in H and for this induced composition H itself is a
group.

2. Define improper subgroup:
A subgroup containing only one element is identity element {e} and G are known

as improper (or) trivial subgroups.

3. Define proper subgroup
A subgroup other than {e} and some element in G are known as proper subgroup.

4. Give two examples of a subgroup
Multiplication group H= {1,-1} is a subgroup of the group G={1,-1,i,-i}.

x 1 -1

1 1 -1

-1 -1 1

The addition group of even integers is a subgroup of the addition group of all
integers.
INTEGERS Z = I = { ……-4, -3, -2, -1,0,1, 2, 3, 4,……}
EVEN INTEGERS= {……..-6, -4, -2, 0, 2, 4, 6,……..}

5. Give an example in which H is a subset of a group G and H-1=H but H is not a
subgroup of G

6. Prove that if H is any subgroup of G then HHH 
Let 21,hh be any element of HH where HhHh  21 , .
Since H is a subgroup of G , therefore

HHH
HhhHh


 2121 h 

-------(1)
Now let h be any element of H. Then we can write heh  where e is the
identity of G. Now HHhe , since HeHh  , .
Thus HHH  -----(2)
Hence HH = H.

7. Define right coset
Suppose G is a group and H is any subgroup of G. Let a be any element
of G. Then the set }:{ HhhaHa  is called a right coset of H in G
generated by a.

Kavitha Chandramohan




Example:
G= {-1,1,i, -i} group
H= {1,-1} subgroup
1 ℇ G
H.1 = RIGHT COSET = {1.1 , -1.1}= Ha

8. If G is the additive group of integers and H is the subgroup of G obtained on
multiplying the elements of G by 3 then find the right coset decomposition of
G with respect to H.

)2()1(  HHHG .
9. Define index of a subgroup in a group

If H is a subgroup of a group G, the number of distinct right(left) cosets of H
in G is called the index of H in G and is denoted by )(HiG

10. State Lagrange’s theorem

The order of each subgroup of a finite group is a divisor of the order of the group.

O(G)/O(H)

11. Define Normal subgroup

A subgroup H of a group G is said to be a normal subgroup of G if for every Gx and

for every HxhxHh  1, .

12. Define improper normal subgroup
Every group G possesses at least two normal subgroups namely G itself and the subgroup
consisting of the identity element e alone. These are called improper normal subgroups.

13. Define simple group.
A group having no proper normal subgroups is called a simple group.

14. Show that every subgroup of an abelian group is normal.

Let G be abelian group and H be a subgroup of G. Let x be any element of G and h

any element of H, we have Hhehhxxxhx   11 .

Thus HxhxHhGx  1, . Hence H is normal in G.

15. Define normalizer of an element of a group.

If Ga , then N(a), the normalizer of a in G is the set of all those element of G
which commute with a. Symbolically xa}ax : {)(  GxaN .

16. Define Quotient group

If G is a group and H is a subgroup of G then the set of cosets of H in G is a group
with respect to multiplication of cosets. It is called the Quotient group G/H in H.

Kavitha Chandramohan
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17. How that every quotient group of an abelian group is abelian
Let G be an abelian group and H be a subgroup of G. Then H is quotient group of G.
If Gba , then HbHa, are any two elements of G/H. We have,

))((
))((

HaHb
HbaHabHbHa




.

Therefore G/H is abelian.

18.Define onto homomorphism of groups
A mapping f from a group G onto a group G is said to be a homomorphism of G
onto G if Gba,)()()(  bfafabf . Also then G is said to be a
homomorphic image of G.

17. I
f f is a homomorphism of a group G into a group G’ then eef )( where e is the
identity of G and e is the identity of G 
Let Ga . Then Gaf )( . We have

)()(
)(

)()(

efaf
aef
afeaf





Now G’ is a group . Therefore
)()()( efafeaf 

)(efe 
Gba,)()()(  bfafabf

18. D
efine kernel of a Homomorphism
If f is a homomorphism of a group G into a group G  , then the set K of all those
elements of G which are mapped by f onto the identity eof G  is called the kernel
of the homomorphism f.
Thus if f is a homomorphism of G into G  , then K is the kernel of f if

G ofidentity   theis )(:{  exfGxK

Kavitha Chandramohan
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1.Prove that
i) The identity of a subgroup in the same as that of the

group.

ii) The inverse of any element of a subgroup in the same as
the inverse of the same regarded as an element of the
group.

iii) The order of any element of a subgroup is the same as the
order of the element regained as a member of the group.

i) Let H be a sub-group of a group G. Prove that the identity

element of subgroup H is the same as the identity element of

the group G.

Proof:

Let e be the identity element in G and be the identity element in H.

Let a be any element in H. Then a ɛ G

Since a ɛ G, a•e = a ….(1) G

Since a ɛ H, a • = a …….(2) H

From (1) and (2), a • e = a •

∴By left cancellation law, e =

Hence both H and G have the same identity element.

II) Property 2

Let H be a subgroup of G. Prove that the inverse of an element a ɛ H

is the same as the inverse of a ɛ G (Or)

The inverse of an element in a subgroup is the same as the inverse of

that element in the group.

Proof :



Let a ɛ H , then a ɛ G .

Let a' and a" be the inverses of a in H and G respectively.

Then a • a' = a' • a = e ….(1)

a • a" = a" • a = e ----(2)

∴a • a' = a • a"

Hence by left cancellation law, a' = a"

∴ The inverse of a in H is the same as the inverse of a in G.

III) Lemma.

Suppose that G is a group containing an element g with gn = e.

There is a unique group homomorphism f : Zn -> G such that f(1)
= g. In particular every group of order n with an element of order n
is isomorphic to Zn.

Proof.

Suppose that f : Zn -> G is a homomorphism such that f(1) = g.

Then for a = 0, 1,……, n-1, f(a +n 1) = f(a).f(1) = f(a)g. Thus we can
see inductively that

f(a) = ga for all a ℇ Zn. Thus if f exists then it is unique.

We now see how to construct f. We define f(a) = ga for all a ℇ Zn and we

must prove that this defines a homomorphism.

That is we must show that ga+nb = f(a+n b) and ga+b = f(a)f(b)

are equal for all a, b ɛ Zn.

Since a+b - (a+n b) = kn for some integer k and gn = e, we see
that

ga+bg-(a +n b) = (gn)k = ek = e:



Thus ga+b = ga+nb as claimed.

Suppose now that G has order n and g ℇ G has order n.

By the previous part there is a homomorphism f : Zn -> G such that f(a)
= ga for each a ℇ Zn.

Suppose that f(a) = f(b) for a, b ℇ Zn. Then f(b - n a) = ga.- nb = e thus a =
b else g would have order strictly smaller than n. It follows that ker f = {e}
and | Im f| has n elements and so must be the whole of G. Thus f is an
isomorphism.

2.A non-empty subset H of a group G is a subgroup of G iff

(i) HabHbHa  ,

(ii) HaHa  1 where a-1 is the inverse of a in G.

Or
Theorem: Let H be a nonempty subset of a group G. H is a subgroup
of G iff (i) H is closed under the operation in G and (ii) every element
in H has an inverse in H.

Proof.

Properties (i) and(i i) are, respectively, the closure and inverse axioms of
a group.

Associativity holds in H, since it holds already in G.

We only need to verify that e ℇ H.

But (i) and(i i) together imply that e = aa−1 ℇ H. Therefore, H is a group.

Or

Suppose H is a subgroup of G, then H must be closed with

respect to composition a in G, i.e. a∈H,b∈H⇒a∘ b∈H.

Let a ɛH and a
–1

be the inverse of a in G.

Then the inverse of a in H is also a
–1
.



As H itself is a group, each element of H will possess

inverse in it,

i.e. a∈H⇒a
–1ɛH.

Thus the condition is necessary. Now let us examine the

sufficiency of the condition

(i) Closure Axiom: a∈H,b∈H⇒a∘ b∈H. Hence the closure

axiom is satisfied with respect to the operation .

(ii) Associative Axiom: Since the elements of H are also

the elements of G, the composition is associative

in H also.

(iii) Existence of Identity: The identity of the subgroup is

the same as the identity of the group

because aɛH,a–1
∈H⇒a∘ a–1∈H⇒e∈H. The identity e is

an element of H.

(iv) Existence of Inverse: Since a∈H⇒a
–1
∈H,∀a∈H.

Therefore each element of H possesses an inverse.

The H itself is a group for the composition ∘ in G.

Hence H is a subgroup.

3.Prove that a necessary and sufficient condition for a non- empty
subset H of a group G to be subgroup is that HabHbHa  1,

where b-1 is the inverse of b in G.

Proof: The condition is necessary.

Suppose H is a subgroup of G and let aɛH,bɛH.

Now each element of H must possess an inverse

because H itself is a group.

b∈H⇒b–1ɛH



Also H is closed under the composition ∘ in G.

Therefore

aɛH,b–1∈H⇒a∘ b–1ɛH

The condition is sufficient. If it is given

that aɛH,b–1
∈H⇒a∘ b

–1ɛH then we have to prove that H is

a subgroup.

(i) Closure

Property: Let a,bɛH then b∈H⇒b–1ɛH (as shown

above). Therefore by the given condition:

aɛH,b–1∈H⇒a∘ (b–1)–1∈H⇒a∘ b∈H

Thus H is closed with respect to the composition ∘ in G.

(ii) Associative Property: Since the elements of H are

also the elements of G, the composition is associative in H.

(iii) Existence of Identity: Since

aɛH,a–1∈H⇒a∘ a–1∈H⇒e∈H

(iv) Existence of Inverse: Let aɛH, then

e∈H,a∈H⇒e∘ a–1∈H⇒a–1ɛH

Then each element of H possesses an inverse.

Hence H itself is a group for the composition ∘ in

group G.

4. Prove that if 1H and 2H are two subgroup of a group G then
21 HH  is also a subgroup of G.

Proof: Let H1 and H2 be any two subgroups of G.

Then H1∩H2≠ϕ because at least the identity element e is

common in both H1 and H2.



Now to prove that H1∩H2 is a subgroup of G, it is

sufficient to show that a∈H1∩H2, b∈H1∩H2⇒

a.b
–1
∈H1∩H2, ∘ being a composition in G.

Since

a∈H1∩H2⇒ aɛH1 and bɛH2 and bɛH1∩H2

⇒H1b∈H1∩H2⇒H1 and b∈H2 and H1,H2 are subgroups

of G we see that

a∈H1,b∈H1⇒a∘ b
–1
∈H1 and

similarly a∈H2,b∈H2⇒a∘ b
–1
∈H2

Thus,

a∘ b
–1
∈H1,a∘ b

–1
∈H2 ⇒a∘ b

–1
∈H1∩H2

which establishes that H1∩H2 is a subgroup of G

5. Prove that if a, b are any two element of a group G and H any
subgroup of G HbHaHba  and .bHaHbHa 

(OR)

Prove that any two right (left) co-set of a subgroup are other disjoint
or identical.

Proof.

we need to show that the union of the left cosets is the whole group, and

that different cosets do not overlap.

Let g ɛ G. Since 1 ɛ H, it follows that g ・ 1 = g is in gH. This shows that

every element of G lies in some coset of H, so the union of the cosets is

all of G.

Next, suppose aH and bH are two cosets of H, and suppose they are not

disjoint. I must show they’re identical: aH = bH. As usual, I can show

two sets are equal by showing that each is contained in the other.



Since aH and bH are not disjoint, I can find an element g ɛ aH ∩ bH.

Write g = ah1 = bh2 for h1, h2 ɛ H. Then a = bh2h1−1

Now let ah ɛ aH. Then ah = bh2h1−1 h.

The element on the right is in bH, since it is b times something in H.

Therefore,

ah ∈ bH, and aH ⊂ bH.

By symmetry, bH ⊂ aH, so aH = bH.



UNIT 3 - Abstract Algebra

Chapter1 - Isomorphism of groups

Definition. Let G1 and G2 be groups, and let : G1 -> G2 be a function. Then is said

to be a group isomorphism if

(i) is one-to-one and onto and

(ii) (ab) = (a) (b) for all a,b G1.

In this case, G1 is said to be isomorphic to G2, and this is denoted by G1 G2.

Proposition. Let : G1 -> G2 be an isomorphism of groups.

(a) If a has order n in G1, then (a) has order n in G2.

(b) If G1 is abelian, then so is G2.

(c) If G1 is cyclic, then so is G2.

Isomorphism theorems; automorphisms

Theorem. [First Isomorphism Theorem] Let G be a group with normal subgroups

N and H such that N H. Then H/N is a normal subgroup of G/N, and (G / N) / (H

/ N) G / H.

Theorem. [Second Isomorphism Theorem] Let G be a group, let N be a normal

subgroup of G, and let H be any subgroup of G. Then HN is a subgroup of G, H N is

a normal subgroup of H, and

(HN) / N H / (H N).

Theorem. Let G be a group with normal subgroups H, K such that HK=G and

H K={e}. Then



G H × K .

Proposition. Let G be a group and let a G. The function ia : G -> G defined by ia(x)

= axa-1 for all x G is an isomorphism.

Definition. Let G be a group. An isomorphism from G onto G is called

an automorphism of G.

An automorphism of G of the form ia, for some a G, where ia (x) = axa-1 for all

x G, is called an inner automorphism of G. The set of all automorphisms of G will

be denoted by Aut(G) and the set of all inner automorphisms of G will be denoted by

Inn(G).

Proposition. Let G be a group. Then Aut(G) is a group under composition of

functions, and Inn(G) is a normal subgroup of Aut(G).

Definition. For any group G, the subset

Z(G) = { x G | xg = gx for all g G } is called the center of G.

Proposition. For any group G, we have Inn(G) G/Z(G).

Example. Aut(Z) Z2 and Inn(Z) = {e}

Example. Aut(Zn) Zn×

Lemma : Let G and H be two cyclic groups of the same order. Then G and H are

isomorphic.

Proof.

Let a be a generator of G and let b be a generator of H. Define a map φ: G −→ H as

follows. Suppose that g ∈ G. Then g = a
i
for some i, then send g to gi = b

i
.

We first have to check that this map is well-defined. If G is infinite, then so is H and

every element of G may be uniquely represented in the form a
i
. Thus the map is

automatically well-defined in this case.



Now suppose that G has order k, and suppose that g = aj.

We have to check that b
i
= b

j
.

As ai= aj, ai-j = e and k must divide i − j. In this case b
i−j

= e as the order of H

is equal to k and so b
i
= b

j
. Thus φ is well-defined.

The map H −→ G defined by sending b
i

to a
i

is clearly the inverse of φ. Thus

φ is a bijection.

Now suppose that g = a
i
and h = a

j
. Then gh = a

i+j
and the image of this element

would be b
i + j

.

On the other hand, the image of ai is bi and the image of aj is bj and the product of the

images is bi bj = bi + j .

Here is a far more non-trivial example.

Lemma The group of real numbers under addition and positive real numbers under

multiplication are isomorphic.

Proof. Let G be the group of real numbers under addition and let H be the group of

real numbers under multiplication.

Define a map φ: G −→ H by the rule φ(x) = e
x
. This map is a bijection, by the

well-known results of calculus. We want to check that it is a group isomorphism.

Suppose that x and y ∈ G. Then multiplying in G, we get x + y. Applying φ we get

e
x+y

.

On the other hand, applying φdirectly we get e
x

and e
y
. Multiplying together we get

exey= ex+y.

Definition :Let G be a group. An isomorphism of G with itself is called an

automorphism.

Definition-Lemma . Let G be a group and let a ∈ G be an element of G.

Define a map φ: G −→G



Thus the composition of φ and ψ is the identity. Similarly the composition of ψ and φ

is the identity. In particular φ is a bijection.

Now we check that φ is an isomorphism.

φ(x)φ(y) = (axa
−1

)(aya)

= a(xy)a
−1

= φ(xy).

Thus φ is an isomorphism.

Chapter3 - Cayley’s theorem

Theorem. (Cayley’s Theorem) Let G be a group. Then G is isomorphic to a

subgroup of a permutation group. If moreover G is finite, then so is the permutation

group, so that every finite group is a subgroup of Sn, for some n.

Proof.

Let H = A(G), the permutations of the set G.

Define a map φ: G −→ H

by the following rule. Given a ∈ G, send it to the permutation σ= φ(a),

σ: G −→G , defined as follows σ(g) = ag, for any g ∈ G.



Note that σ is indeed a permutation, that is, σ is a bijection. In fact the inverse of σ is

the map that sends g to a
−1

g.

I claim that φ is an isomorphism onto its image. We first check that φ is an injection.

Suppose that a and b are two elements of G. Let σ and τ be the two corresponding

elements of A(G). If σ = τ , then σ and τ must have the same effect on elements of G.

Look at their effect on e, the identity,

a = ae = σ(e) = τ (e) = be = b.

Thus φ(a) = φ(b) implies a = b and φ is injective. Thus φ is certainly a bijection onto

its image. Now we check that φ(ab) = φ(a)φ(b). Suppose that σ = φ(a) and τ = φ(b)

and ρ = φ(ab). We want to check that ρ = στ . This is an equation that involves

permutations, so it is enough to check that both sides have the same effect on

elements of G. Let g ∈ G. Then

σ(τ(g)) = σ(bg) =

a(b(g)) = (ab)g =

ρ(g).

Thus φ is an isomorphism onto its image.

In practice Cayley’s Theorem is not in itself very useful. For example, if G = D3 then

G is isomorphic to S3. But if we were to apply the machinery behind Cayley’s

Theorem, we would exhibit G as a subgroup of S6, a group of order 6! = 720.

One exception to this is the example of trying to construct a group G of order 4. We

have already shown that there are at most two groups of order four, up to

isomorphism. One is cyclic of order 4. The multiplication table of the other, if it is

indeed a group, we decided was

In fact the only thing left to show is that this rule of multiplication is associative.

The idea is to find a subgroup H of Sn, whose multiplication table is precisely the

one given. The clue to finding H is given by Cayley’s Theorem. For a start Cayley’s

Theorem shows that we should take n = 4.

Now the four permutations of G determined by the multiplication table are



Now it is easy to see that this subset is in fact a subgroup. In fact the square of any

element is the identity and the product of any two elements is the third. Thus H is a

subgroup of S4. Now H is a group of order 4, which is not cyclic. Thus there are at

least two groups of order 4, up to isomorphism.

Chapter3 - Permutation

Permutations

Definition. Let S be a set. A function :S->S is called a permutation of S if is
one-to-one and onto.
The set of all permutations of S will be denoted by Sym(S).
The set of all permutations of the set { 1, 2, ..., n } will be denoted by Sn.

Proposition shows that the composition of two permutations in Sym(S) is again a
permutation. It is obvious that the identity function on S is one-to-one and onto.
Proposition 2.1.8 shows that any permutation in Sym(S) has an inverse function that
is also one-to-one and onto. We can summarize these important properties as follows:

(i) If , Sym(S), then Sym(S);
(ii) 1S Sym(S);
(iii) if Sym(S), then -1 Sym(S).

Definition. Let S be a set, and let Sym(S). Then is called a cycle of length k if
there exist elements a1, a2, ..., ak S such that

(a1) = a2, (a2) = a3, . . . , (ak-1) = ak, (ak) = a1, and

(x)=x for all other elements x S with x ai for i = 1, 2, ..., k.

In this case we write = (a1,a2,...,ak).

We can also write = (a2,a3,...,ak,a1) or = (a3,...,ak,a1,a2), etc. The notation for a
cycle of length k can thus be written in k different ways, depending on the starting
point. The notation (1) is used for the identity permutation.



Cycles

Definition. Let = (a1,a2,...,ak) and = (b1,b2,...,bm) be cycles in Sym(S), for a set S.
Then and are said to be disjoint if ai bj for all i,j.

Proposition. Let S be any set. If and are disjoint cycles in Sym(S), then
= .

Theorem. Every permutation in Sn can be written as a product of disjoint cycles. The
cycles that appear in the product are unique.

Definition. Let Sn. The least positive integer m such that m = (1) is called
the order of .

Proposition. Let Sn have order m. Then for all integers j,k we have

j = k if and only if j k (mod m).

Proposition. Let Sn be written as a product of disjoint cycles. Then the order
of is the least common multiple of the lengths of its cycles.

Transposition

Definition. A cycle (a1,a2) of length two is called a transposition.

Proposition. Any permutation in Sn, where n 2, can be written as a product of
transpositions.

Theorem. If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even in both cases or odd in both cases.



Definition. A permutation is called even if it can be written as a product of an even
number of transpositions, and odd if it can be written as a product of an odd number
of transpositions.

Chapter4- Permutation groups

Permutation groups

Definition. The set of all permutations of a set S is denoted by Sym(S).
The set of all permutations of the set {1,2,...,n} is denoted by Sn.

Proposition. If S is any nonempty set, then Sym(S) is a group under the operation of
composition of functions.

Theorem. Every permutation in Sn can be written as a product of disjoint cycles. The
cycles that appear in the product are unique.

Proposition. If a permutation in Sn is written as a product of disjoint cycles, then its
order is the least common multiple of the lengths of its cycles.

symmetric group

Definition. Any subgroup of the symmetric group Sym(S) on a set S is called
a permutation group or group of permutations.

Theorem. (Cayley) Every group is isomorphic to a permutation group.



Definition. Let n > 2 be an integer. The group of rigid motions of a regular n-gon is
called the nth dihedral group, denoted by Dn.

We can describe the nth dihedral group as

Dn= { ak, akb | 0 k < n },

subject to the relations o(a) = n, o(b) = 2, and ba = a-1b.

Theorem. If a permutation is written as a product of transpositions in two ways, then
the number of transpositions is either even in both cases or odd in both cases.

Odd Even permutation

Definition. A permutation is called even if it can be written as a product of an even
number of transpositions, and odd if it can be written as a product of an odd number
of transpositions.

Proposition. The set of all even permutations of Sn is a subgroup of Sn.

Definition. The set of all even permutations of Sn is called the alternating group on
n elements, and will be denoted by An.

Practice question and answer- Unit- III - Abstract algebra

1. Define into isomorphism of groups

A mapping f from a group G into a group G is a homomorphism of G into
G and f is one-one, then f is an isomorphism of G into G .

2. Define onto isomorphism of groups

A mapping f from a group G onto a group G is a homomorphism of G into
G and f is one-one, then f is an isomorphism of G onto G .

3. Define endomorphism



A homomorphism of a group into itself is called an endomorphism.

4. Define automorphism of a group
An isomorphic mapping of a group G onto itself is called an automorphism of

G.
5. Show that the mapping f: II  such that Ixxxf )( is an

automorphism of the additive group of integers I.

6. Define permutation
Suppose S is a finite set having n distinct elements. Then a one-one mapping
of S onto itself is called a permutation of degree n. The number of elements in
a finite set S is known as the degree of permutation.

7. Give an example of two permutations of degree 4.











1432
4321

f and 









1234
4321

g are permutations of degree 4.

8. When will you say two permutations of degree n are equal?
Two permutations f and g of degree n are equal if we have

Sa )()(  agaf where },...,,{ 21 naaaS 

9. Define symmetric set of permutations of degree n.
If S is a finite set having n distinct elements, then we shall have !n distinct
arrangements of the elements of S. Therefore there will be !n distinct
permutations of degree n. If Pn be the set consisting of all permutations of
degree n then the set Pn will have !n distinct elements. This set Pn is called
the symmetric set of permutations of degree n.

10. Define identity permutation
If I is a permutation of degree n such that I replaces each element by the
element itself. I is called the identity permutation of degree n.

11. Define product or composite of two permutations
The product of or composite of two permutations f and g of degree n denoted
by fg, is obtained by first carrying out the operation defined by f and then g.

12. Let 









15432
54321

f and 









35421
54321

g be two permutations of

degree 5. Then find fg.











13542
54321

fg

13. Give an example that multiplication of permutations is not commutative.

Let 


















132
321

g and 
231
321

f be two permutations of degree 3.

Then 


















123
321

gf and 
312
321

fg
.

gffgobviously 
.



14. Define cyclic permutation
Suppose f is a permutation of degree n on a set having n distinct elements. Let
it be possible to arrange m elements of the set S in a row in such a way that
the f-image of each element in the row is the element which follows it, the
f-image of the last element is the first element and the remaining n-m
elements of the set S are left unchanged by f. Then f is called a cyclic
permutation or a cycle of length m or an m cycle.

15. Write down the cycle representation for the permutation given below:









361542
463521

(1 2 4 3)

16. If (1 3 4 2 6) is a cycle of length 5 then find the permutation of
degree 9 on a set S consisting of the elements 1,2,3,…,9.









987516243
987654321

17. Write the following permutation as the product of disjoint cycles.









897615432
987654321

18. Define Transpositions
A cycle of length two is called a transposition.

19. Define even permutation
A permutation is said to be an even permutation if it can be expressed as a
product of an even number of transpositions; otherwise it is said to be an odd
permutation.

20. Whether the following permutation is a even permutation
2)  3)(1  2  1(f

We can write f=(1 2)(1 3)(1 2). The number of transpositions is 3.i.e, odd.
Therefore f is an odd permutation.

21. The necessary and sufficient condition for a homomorphism f of a group G
into a group G with kernel K to be an isomorphism of G into G is that
K={e}.

Proof



Let G be a group, and let K⊂G be a subgroup

we claim that K is the kernel of some homomorphism φ:G→G if and only
if K is normal, and G/K is isomorphic to a subgroup K′ of G.

Indeed, if Let G be a group, and let K⊂G be a subgroup.

we claim that K is the kernel of some homomorphism φ:G→G if and only
if K is normal, and G/K is isomorphic to a subgroup K′ of G.

If K=ker (φ) for some Homomorphism φ: G→G, then K is normal and by the
first isomorphism theorem, G/K≅ im(φ), which is a subgroup of G.

On the other hand, if G/K is isomorphic to the subgroup K′ of G, then the
composition of the projection G→G/K with the isomorphism from G/K to

K′ and the inclusion K′↪ G gives a homomorphism from G to G with kernel K.



Unit- III

1. Define into isomorphism of groups
A mapping f from a group G into a group G is a homomorphism of G into
G and f is one-one, then f is an isomorphism of G into G .

2. Define onto isomorphism of groups
A mapping f from a group G onto a group G is a homomorphism of G into
G and f is one-one, then f is an isomorphism of G onto G .

3. Define endomorphism
A homomorphism of a group into itself is called an endomorphism.

4. Define automorphism of a group
An isomorphic mapping of a group G onto itself is called an automorphism of

G.
5. Show that the mapping f: II  such that Ixxxf )( is an

automorphism of the additive group of integers I.

6. Define permutation
Suppose S is a finite set having n distinct elements. Then a one-one mapping
of S onto itself is called a permutation of degree n. The number of elements in
a finite set S is known as the degree of permutation.

7. Give an example of two permutations of degree 4.











1432
4321

f and 









1234
4321

g are permutations of degree 4.

8. When will you say two permutations of degree n are equal?
Two permutations f and g of degree n are equal if we have

Sa )()(  agaf where },...,,{ 21 naaaS 

9. Define symmetric set of permutations of degree n.
If S is a finite set having n distinct elements, then we shall have !n distinct
arrangements of the elements of S. Therefore there will be !n distinct
permutations of degree n. If Pn be the set consisting of all permutations of
degree n then the set Pn will have !n distinct elements. This set Pn is called the
symmetric set of permutations of degree n.

10. Define identity permutation
If I is a permutation of degree n such that I replaces each element by the
element itself. I is called the identity permutation of degree n.

11. Define product or composite of two permutations
The product of or composite of two permutations f and g of degree n denoted
by fg, is obtained by first carrying out the operation defined by f and then g.

12. Let 









15432
54321

f and 









35421
54321

g be two permutations of

degree 5. Then find fg.













13542
54321

fg

13. Give an example that multiplication of permutations is not commutative.

Let 


















132
321

g and 
231
321

f be two permutations of degree 3. Then f




















123
321

gf and 
312
321

fg
.

gffgobviously 
.

14. Define cyclic permutation
Suppose f is a permutation of degree n on a set having n distinct elements. Let
it be possible to arrange m elements of the set S in a row in such a way that the
f-image of each element in the row is the element which follows it, the
f-image of the last element is the first element and the remaining n-m elements
of the set S are left unchanged by f. Then f is called a cyclic permutation or a
cycle of length m or an m cycle.

15. Write down the cycle representation for the permutation given below:









361542
463521

(1 2 4 3)
16. If (1 3 4 2 6) is a cycle of length 5 then find the permutation of degree 9 on

a set S consisting of the elements 1,2,3,…,9.









987516243
987654321

17. Write the following permutation as the product of disjoint cycles.









897615432
987654321

18. Define Transpositions
A cycle of length two is called a transposition.

19. Define even permutation
A permutation is said to be an even permutation if it can be expressed as a
product of an even number of transpositions; otherwise it is said to be an odd
permutation.

20. Whether the following permutation is a even permutation

21.
2)  3)(1  2  1(f

We can write f=(1 2)(1 3)(1 2). The number of transpositions is 3.i.e, odd.
Therefore f is an odd permutation.





Unit-III

1. The necessary and sufficient condition for a homomorphism f of a group G into a
group G with kernel K to be an isomorphism of G into G is that K={e}.

Proof
Let G be a group, and let K⊂G be a subgroup. I claim that K is the kernel of some
homomorphism φ:G→G if and only if K is normal, and G/K is isomorphic to a
subgroup K′ of G. Indeed, if K=ker(φ) for some homomorphism φ:G→G,
then K is normal and by the first isomorphism theorem, G/K≅ im(φ), which is a
subgroup of G. On the other hand, if G/K is isomorphic to the subgroup K′ of G,
then the composition of the projection G→G/K with the isomorphism
from G/K to K′ and the inclusion K′↪ G gives a homomorphism from G to G with
kernel K.
2. Show that additive group of integers ,...}3,2,1,0,1,2,3{..., G is isomorphic to

the additive group ,...}3,2,1,0,1,2,3{..., mmmmmmG  where m is any fixed
integer not equal to zero.

3. Let f be an isomorphic mapping of a group G into a group G’ . Then prove that
i)The f image of the identity e of G is the identity of G’i.e, f(e) is the identity of G’.
ii)The f image of the inverse of an element a of G is the inverse of the f-image of a
ie.,f(a-1) = [f(a)]-1

iii)The order of an element a of G is equal to the order of its image f(a).



Lemma : Let G and H be two cyclic groups of the same order. Then G and H are

isomorphic.

Proof.

Let a be a generator of G and let b be a generator of H. Define a map φ: G −→ H as

follows. Suppose that g ∈ G. Then g = a
i
for some i, then send g to gi = b

i
.

We first have to check that this map is well-defined. If G is infinite, then so is H and

every element of G may be uniquely represented in the form a
i
. Thus the map is

automatically well-defined in this case.

Now suppose that G has order k, and suppose that g = aj.

We have to check that b
i
= b

j
.

As ai= aj, ai-j = e and k must divide i − j. In this case b
i−j

= e as the order of H is

equal to k and so b
i
= b

j
. Thus φ is well-defined.

The map H −→ G defined by sending b
i

to a
i

is clearly the inverse of φ. Thus

φ is a bijection.

Now suppose that g = a
i
and h = a

j
. Then gh = a

i+j
and the image of this element would

be b
i + j

.

On the other hand, the image of ai is bi and the image of aj is bj and the product of the

images is bi bj = bi + j .

4. Show that the multiplicative group G= {1,-1,i,-i} is isomorphic to the permutation
group.



5. State and prove Fundamental theorem on homomorphism of groups.



6. Show that 1 aa is an automorphism of a group G iff G is abelian.

7. If H be a normal subgroup of a group G and K a normal subgroup of G
containing H, then G/K  (G/H)(K/H).

8. Let G be a group and let H be any subgroup of G. If N is any normal subgroup of G,
then

)/(/ NHHNHN  .

Second Isomorphism Theorem
The second isomorphism theorem relates two quotient groups involving products
and intersections of subgroups.Let G be a group, let H be a subgroup, and let N be a
normal subgroup. Then HN = \{hn : h ℇ H, n ℇ N\} is a subgroup of G, and
HN/N≃ H/(H∩N).

Let S3 ​ be the symmetric group on three letters. Let H be the subgroup generated by
the transposition , and let N be the subgroup generated by the transposition.

https://brilliant.org/wiki/symmetry-group/
https://brilliant.org/wiki/subgroup/


Then the second isomorphism theorem gives an isomorphism
HN/N≃ H/(H∩N),where HN={hn:h∈H,n∈N}.

Now H∩N={1}, so the right side has order 2. So the left side has
order 2. Now |N|=2 and |HN/N|=2, so |HN|=4. But Lagrange's theorem says
that |HN| must divide∣S3 ​∣, which is 6.

I. As defined above, HN is not a subgroup of S3 ​, so Lagrange's theorem does not
apply.
II. The order of a quotient G/K of finite groups is not always equal to |G|/|K|.
III. N is n

9. Prove that a cyclic group G with generator of finite order n is isomorphic to the
multiplicative group of n nth roots of unity.

https://brilliant.org/wiki/group-isomorphism-theorems/
https://brilliant.org/wiki/lagranges-theorem/


10. Show that a cyclic group G with a generator of finite order n is isomorphic to the
additive group of residue classes modulo n.



(OR)
1. Prove that the set Pn of all permutations on n symbols is a finite group of order !n

with respect to composite of mapping as the operation. For 2n , this group is
abelian and for n > 2 it is always non-abelian.

Let S={a1,a2,a3,…,an} be a finite set having n distinct elements. Thus there
are n! permutations possible on S. If Pr denotes the set of all permutations of
degree n then the multiplication of permutation on Pn satisfies the following axioms.

Closure Axiom: Let f, g∈Pn, then each of them is one-one mapping of S onto
itself and therefore their composite mapping (g∘ f) is a one-one mapping of S onto
itself. Thus (g∘ f) is a permutation of degree n on S, i.e.

f,g∈Pn⇒fg∈Pn

This shows that Pn is closed under multiplication.



Associative Axiom: Since the product of two permutations on a set S is nothing but
the product of two one-one onto mappings on S and the product of mapping is
associative, the product of permutations also obeys the associative law. Hence

f,g,h∈Pn⇒(fg)h=f(gh)

Identity Axiom: Identity permutation I∈Pn is the identity of multiplication

inPn because

If=fI=f∀f∈Pn

Inverse Axiom: Let f∈Pn then f is one-one mapping, hence it is investible.
Hence f–1, the inverse mapping of f is also one-one and onto. Consequently,f–1 is also

a permutation inPn.

f
–1
f=ff

–1
=I

Thus the symmetric set Pn of all permutations of degree n defined on a finite set

forms a finite group of order n! with respect to the composite of permutations as the
composition.

Commutative Axiom: If we consider the symmetric group (P1,0) of permutations
of degree 1 with respect to permutation product 0, then it consists of a single

permutation, namely the identity permutation I. Since I0I=I, (P1,0) is an abelian
group. If we consider the symmetric group (P2,0) of all permutations of degree 2, i.e.

the group of all permutations defined on a set of two elements (a1,a2), then



Therefore an operation having commutative (P2,0) is an abelian group of order
2. But when n>2 then the permutation product is not necessarily commutative.

Hence (Pn,0) is not necessarily an abelian group.

2. State and prove Cayley’s theorem

Cayley’s Theorem:
Every group is isomorphic to a permutation group.

Proof: Let G be a finite group of order n. If a∈G, then ∀x∈G, ax∈G. Now
consider a function from G into G, defined by

fa(x)ax∀x∈G

For x, y ∈ G,fa(x) = fa(y) ⇒ ax = ay ⇒ x = y. Therefore, the function fa is
one-one.

The function fa is also onto because if x is any element of then there exists an
element a–1x such that

fa(a–1x) = a(a–1x) = (aa–1)x = ex = x

Thus fa is one-one from G onto G. Therefore, fa is a permutation on G. Let G′ denote
the set of all such one-to-one functions defined on G corresponding to every element
of G, i.e. G′={fa:a∈G}

Now, we show that G′ is a group with respect to the product of functions.

(i) Closure Axiom: Let fa,fb∈G′ where a,b∈G, then

(fa∘ fb)x=fa[fb(x)]=fa(bx)=a(bx)=(ab)x=fab(x)∀x∈G

Since ab∈G, therefore fab∈G′ and thus G′ is closed under the product of functions.

(ii) Associative Axiom: Let fa,fb,fc∈G′ where a,b,c∈G, then

fa∘ (fb∘ fc)=fa∘ fbc=fa(bc)=f(ab)c=fab∘ fc=(fa∘ fb)∘ fc

The product of functions is associative in G′.

(iii) Identity Axiom: If ee is the identity element in G, then fe is the identity
of G′ because ∀fx∈G′ we have fe∘ fx=fex=fx and fx∘ fe=fxe=fx.

(iv) Inverse Element: If a–1 is the inverse of a in G, then fa–1 is the inverse
of fa in G′ because fa–1∘ fa = fa–1a = fe and fa∘ fa–1 = faa–1 = fe

Hence G′ is a group with respect to the composite of functions denoted by the
symbol ∘ .



Now consider the function g and G into G′ defined by g(a)=fa∀a∈G.
g is one-one because for a,b∈G.

g(a)=g(b)⇒fa=fb⇒fa(x)=fb(x)

⇒ax=bx⇒a=b,∀x∈G

g is onto because if fa∈G′ then for a∈G, we have g(a)=fa
g preserves composition in G and G′ because if a,b∈G then

g(ab)=fab=fa∘ fb=g(a)∘ g(b)

Hence G ≅ G′.

3. If f and g are two disjoint cycles then fg=gf i.e, the product of disjoint cycles is
commutative.

Theorem 1: The product of disjoint cycles is commutative.

Proof: Let f and g be any two disjoint cycles, i.e. there is no element common in two
when they are expressed in one row notation. Therefore, the elements permuted
by f are invariant under g and the elements permuted by g are invariant under f.
Hence f∘ g=g∘ f the product of disjoint cycles is commutative.

4. Prove that every permutation can be expressed as a product of disjoint cycles.

Proof: Let the given permutation ff be denoted by the usual two row symbol within a

bracket. Let aa be any element in the first row and bb the element in the second row

exactly beneath aa, i.e. f(a)=bf(a)=b. Similarly, let f(b)=cf(b)=c. Continuing this

process, an element 1 may be found in the upper row such that its ff image is aa.

Then a,b,c,…1a,b,c,…1 is one circular permutation. If there are additional

elements a′,b′,a′,b′,, etc., in the original permutation ff, follow the above process to

obtain another cycle (a′,b′,c′,…,1')(a′,b′,c′,…,1′). Even now, if some element or
elements are left in the original permutation this procedure can be repeated to the

extent that all the elements of ff are exhausted. In this way the original permutation
can be put as the product of disjoint cycles.



5. Prove that every cycle can be expressed as a product of transpositions in infinitely
many ways.

Proof: To prove the above result, we shall first show that every cycle can be
expressed as a composite of transpositions. Let us consider a

cycle (a1,a2,…,an)(a1,a2,…,an) then

(a1,a2,…,an)=(a1an)(a1an–1)…(a1a2)(a1,a2,…,an)=(a1an)(a1an–

1)…(a1a2)

We have already proved that every permutation can be expressed as a composition of
disjoint cycles. Therefore in the light of the two results stated above, every
permutation can be expressed as a product of transpositions.

6. Prove that if a permutation f is expressed as a product of transpositions then the
number of transpositions is either always even or always odd.



7. Of the n! permutations on n symbols, !
2
1 n are even permutations and !

2
1 n are

odd nd

Proof: Let the even permutations be e1,e2,…,eme1,e2,…,em and the odd

permutations be o1,o2,…,oko1,o2,…,ok. Thenm+k=n!m+k=n!



8. Show that the alternating set An of all even permutations of degree n forms a finite

group of order
2
!n

with respect to permutation multiplication.

9. Show that the set Pn of all permutations on three symbols 1,2,3 is a finite non-abelian
group of order 6 with respect to permutation multiplication as composition.

10. i) If 


















213
321

B and 
132
321

A then find AB and BA.

ii) Find the inverse of the permutation  
45213
54321








A

iii) Decompose the following permutation into transpositions

 
7134256
7654321








A

iv) Examine whether the following permutation is even or odd:

 
897163452
987654321








A
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UNIT 4 - Rings

Introduction to Rings in Algebra
The concept of a group has its origin in the set of mappings or permutations of a set
unto itself. So far we have considered sets with one binary operation only. But rings
are the motivation which arises from the fact that integers follow a definite pattern
with respect to addition and multiplication. Thus we now aim at studying rings which
are algebraic systems with two suitably restricted and related binary operations.

Definition
An algebraic structure (R,+,×) where R is a non-empty set and + and × are
defined operations in R is called a ring if for all a,b,c in R, the following axioms
are satisfied:

R1: (R,+) is an abelian group.

(i) a + b ∈ R [Closure Law for Addition]

(ii) (a + b) + c = a + (b + c) [Associative Law of Addition]

(iii) a + 0 = a = 0 + a ∀ a ∈ R [Existence of Additive Identity]

(iv) a + (–a ) = – a + a = 0 ∀ a ∈ R [Existence of Additive Inverse]

(v) a + b = b + a ∀ a ∈ R [Commutative Law of Addition]

R2: (R, ×) is a semi group.

(i)a⋅ b∈ R [Closure Law for Multiplication]

(ii)(a⋅ b)⋅ c = a⋅ (b⋅ c) [Associative Law of Multiplication]

R3: Multiplication is left as well as right distributive over addition, i.e.
a⋅ (b+c)=a⋅ b + a⋅ c and (b+c)⋅ a = b⋅ a + c⋅ a

Examples of Rings
Example 1:

A Gaussian integer is a complex number a+ib, where a and b are integers. Show that
the set J(i) of Gaussian integers forms a ring under the ordinary addition and
multiplication of complex numbers.

Solution:

Let a1+ib1 and a2+ib2 be any two elements of J(i), then

(a1 + ib1) + (a2 + ib2) = (a1 + a2) = i(b1 + b2) = A + iB

https://www.emathzone.com/tutorials/group-theory/introduction-to-rings-in-algebra.html
https://www.emathzone.com/tutorials/group-theory/examples-of-ring.html
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and

(a1 + ib1)⋅ (a2 + ib2) = (a1a2 – b1b2) + i(a1b2 + b1a2) = C + iD

These are Gaussian integers and therefore J(i) is closed under addition as well as the
multiplication of complex numbers. Addition and multiplication are both associative
and commutative compositions for complex numbers.

Also, multiplication distribution with respect to addition. The additive inverse of a +
ib ∈ J(i) is (–a) + (–b)i ∈J (i) as

(a + ib) = (–a) + (–b)I = (a – a) + (b –b)i = 0 + 0i = 0

The Gaussian integer 1+0⋅ i is the multiplicative identity. Therefore, the set of
Gaussian integers is a commutative ring with unity.

Example 2: Prove that the set of residue {0, 1, 2, 3, 4} modulo 5 is a ring with respect
to the addition and multiplication of residue classes (mod 5).

Solution: Let R = {0, 1, 2, 3, 4}. Addition and multiplication tables for given
set R are:

+ mod 5 0 1 2 3 4 mod 5 0 1 2 3 4
0 0 1 2 3 4 0 0 0 0 0 0
1 1 2 3 4 0 1 0 1 2 3 4
2 2 3 4 0 1 2 0 2 4 1 3
3 3 4 0 1 2 3 0
4 4 0 1 2 3 4

From the addition composition table the following is clear:

(i) Since all elements of the table belong to the set, it is closed under addition (mod
5).

(ii) Addition (mod 5) is always associative.

(iii) 0∈R is the identity of addition.

(iv) The additive inverse of the elements 0, 1, 2, 3, 4 are 0, 4, 3, 2, 1 respectively.

(v) Since the elements equidistant from the principal diagonal are equal to each other,
the addition (mod 5) is commutative. From the multiplication composition table, we
see that (R, .) is a semi group, i.e. following axioms hold good.

(vi) Since all the elements of the table are in R, the set R is closed under
multiplication (mod 5).
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(vii)Multiplication (mod 5) is always associative.

(viii) The multiplication (mod 5) is left as well as right distributive over addition
(mod 5).

Hence (R,+,⋅ ) is a ring.

ELEMENTARY PROPERTIES OF RING

If R is a ring, then for all a,b are in R.

(a) a⋅ 0 = 0⋅ a = a
(b) a(–b) = (–a) b = –(ab)
(c)(–a) (–b) = ab

Proof:

(a)We know that a0 = a (0 + 0) = a0 + a0 ∀ a ∈R [using distributive law]

Since R is a group under addition, applying the right cancellation law,
a0 = a0 + a0 ⇒ a + a0 = a0 + a0 ⇒ a0 = 0

Similarly, 0a = (0 + 0) a = 0a + 0a ∀a ∈ R [using distributive law]
∴0+0a=0a+0a [because0=0a+0a]

Applying right cancellation law for addition, we get 0 = 0a i.e. 0a = 0

Thus a0 = 0a = 0

(b) To prove that a (–b) = – ab we should show that ab = a(–b) = 0

We know that a [b + (b)] = a0 = 0 because b + (–b) = 0 with the above result (a)
ab+a(–b)=0[by distributive law]

∴ a (–b) = – (ab)

Similarly, to show (–a)b = – ab, we must show that ab + (–a)b = 0

But ab + (–a)b = [a + (–a)] b = 0b = 0
∴ – (a) b = – (ab) hence the result.

(c) Proving (–a) (–b) = ab is a special case of forgoing the article. However its proof
is given as:
(–a) (–b) = – [a (–b) ] = [– (ab)] = ab

This is because – (– x) = x is a consequence of the fact that in a group, the inverse
of the inverse of an element is the element itself.
This is because – ( – x ) = x is a consequence of the fact that in a group, the inverse
of the inverse of an element is the element itself.

Special Types of Rings

https://www.emathzone.com/group-theory/special-types-of-rings.html


4

1. Commutative Rings

A ring R is said to be a commutative if the multiplication composition in R is
commutative,

i.e. ab=ba∀a,b∈R

2. Rings With Unit Element

A ring R is said to be a ring with unit element if R has a multiplicative identity, i.e.
if there exists an element R denoted by 1, such that

1⋅ a=a⋅ 1∀a∈R

The ring of all n × n matrices with element as integers (rational, real or complex
numbers) is a ring with unity. The unity matrix

In=[100⋯ 0010⋯ 0001⋯ 0⋮ ⋮ ⋮ ⋱ ⋮ 000⋯ 1] is the unity element of the ring.

3. Rings With or Without Zero Divisors

While dealing with an arbitrary ring R, we may find elements a and b in R, where
neither of which is zero and their product may be zero. We call such elements divisors
of zero or zero divisors.

Definition:

A ring element a(≠0) is called a divisor of zero if there exists an element b(≠0) in
the ring such that either
ab = 0 or ba = 0

We also say that a ring R is without zero divisors if the product of no two non-zero
elements of the same is zero, i.e. if
ab = 0 ⇒ either a = 0 or b = 0 or both a = 0 and b=0

Cancellation Laws in a Ring
Cancellation Laws in a Ring

We say that cancellation laws hold in a ring R if
ab = bc (a ≠ 0) ⇒ b = c and ba = ca ( a ≠ 0 ) ⇒ b = c where a,b,c are in R.

Thus in a ring with zero divisors, it is impossible to define a cancellation law.

Theorem:

A ring has no divisor of zero if and only if the cancellation laws holds in R.

Proof:

Suppose that R has no zero divisors. Let a,b,c be any three elements of R such
that a≠0,ab=ac.

https://www.emathzone.com/tutorials/group-theory/cancellation-laws-in-a-ring.html
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Now ab = ac ⇒ ab–ac = 0 ⇒ a (b–c) = 0 ⇒ b–c = 0

[because R is without zero divisor and a≠0] ⇒ b = c

Thus the left cancellation law holds in R. Similarly, it can be shown that the right
cancellation law also holds in R.

Conversely, suppose that the cancellation law holds in R. Let a, b ∈ R and if
possible let ab = 0 with a ≠ 0, b ≠ 0 then ab = a⋅ 0 (because a⋅ 0 = 0).

Since a ≠ 0,ab = a⋅ 0 ⇒ b = 0

Hence we get a contradiction to our assumption that b ≠ 0 and therefore the theorem
is established.

Division Ring

A ring is called a division ring if its non-zero elements form a group under the
operation of multiplication.

Pseudo Ring

A non-empty set R with binary operations + and × satisfying all the postulates of a
ring except right and left distribution laws is called pseudo ring if

(a+b)⋅ (c+d)=a⋅ c+a⋅ d+b⋅ c+b⋅ d

for all a,b,c,d∈R
Integral Domain in Rings
Integral Domain: A commutative ring with unity is said to be an integral domain if it
has no zero-divisors. Alternatively a commutative ring R with unity is called an
integral domain if for all a, b ∈ R, ab = 0 ⇒ a = 0 or b = 0.

Examples:

(i) The set II of integers under usual addition and multiplication is an integral domain
for any two integers a,b, ab = 0 ⇒ a = 0 or b = 0.

(ii) Consider a ring R={0,1,2,3,4,5,6,7} under the addition and multiplication
modulo 8. This ring is commutative but it is not an integral domain because 2 ∈

R, 4∈R are two non-zero elements such that 2⋅ 4 ≡ 0 (mod 8).

(iii) The ring of complex numbers C is an integral domain.

Let J(i) = {a + ib : a , b ∈ I }. It is easy to prove that J(i) is a commutative ring
with unity. The zero element is 0 + 0i and unit element is 1 + 0i. Also this ring is
free from zero-divisor because the product of two non-zero complex numbers cannot
be zero. Hence J(i) is an integral domain.

Euclidean Ring

https://www.emathzone.com/tutorials/group-theory/integral-domain-in-ring.html
https://www.emathzone.com/tutorials/group-theory/euclidean-ring.html
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− −

An integral domain R is said to be a Euclidean ring if for every a ≠ 0 in R there is
defined a non-negative integer, to be denoted by d(a), such that:

(i) For all a, b ∈ R, both non-zero, d(a)⩽ d(ab),

(ii) For any a, b ∈ R, both non-zero, there exist q, r ∈ R such that a = qb + r when
either r = 0 or d(r) < d(b).

Note: The set of integers Z depends on the property of division algorithm. This
property is also known as the Euclidean algorithm, which is used to find the greatest
common divisors. This property is mostly satisfied for rings, and as such we can say
that such type of rings are called Euclidean rings.

2. The above axioms ensure that the arithmetic in a

ring R is “more or less” the familiar one: To be on the

safe side let us mention the following rules:

0 · a = 0 = a · 0 holds, since

a = 1 · a = (1 + 0)a = a + 0 · a and (−1)a = a(−1) = −a

follows from 0 = (1 + ( 1))a = a + ( 1)a. But there is no

cancellation rule for the multiplication, since there may be

nontrivial “zero divisors”,

i.e. elements a ∈ R \ {0}, such that ab = 0 for some b ƒ= 0, and it can

happen that 1 + ... + 1 = 0 .

So we should actually derive all computation rules we

use from the ring axioms!

Example

1. The sets R = Z, Q, R, C with the usual addition and

multiplication of integers resp. rational, real or

complex numbers are rings.

2. IfM is any set and R a ring, so is the set

RM := {f :M→ R}

of all R-valued maps on M with the argument wise

addition and multiplication of functions:

(f + g)(x) := f(x) + g(x), (fg)(x) := f(x)g(x).
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Commutative rings, in general

The examples to keep in mind are these: the set of integers Z; the set Zn of integers

modulo n; any field F (in particular the set Q of rational numbers and the set R of real

numbers); the set F[x] of all polynomials with coefficients in a field F. The axioms are

similar to those for a field, but the requirement that each nonzero element has a

multiplicative inverse is dropped, in order to include integers and polynomials in the

class of objects under study.

Definition Let R be a set on which two binary operations are defined, called addition

and multiplication, and denoted by + and ·. Then R is called a commutative ring with

respect to these operations if the following properties hold:

(i) Closure: If a,b R, then the sum a+b and the product a·b are uniquely defined and

belong to R.

(ii) Associative laws: For all a,b,c R,

a+(b+c) = (a+b)+c and a·(b·c) = (a·b)·c.

(iii) Commutative laws: For all a,b R,

a+b = b+a and a·b = b·a.

(iv) Distributive laws: For all a,b,c R,

a·(b+c) = a·b + a·c and (a+b)·c = a·c + b·c.

(v) Additive identity: The set R contains an additive identity element, denoted by 0,

such that for all a R,

a+0 = a and 0+a = a.

(vi) Additive inverses: For each a R, the equations

a+x = 0 and x+a = 0
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have a solution x R, called the additive inverse of a, and denoted by -a.

The commutative ring R is called a commutative ring with identity if it contains an

element 1, assumed to be different from 0, such that for all a R,

a·1 = a and 1·a = a.

In this case, 1 is called a multiplicative identity element or, more generally, simply

an identity element.

As with groups, we will use juxtaposition to indicate multiplication, so that we will

write ab instead of a·b.

Example (Zn) The rings Zn form a class of commutative rings that is a good source

of examples and counterexamples.

Definition Let S be a commutative ring. A nonempty subset R of S is called

a subring of S if it is a commutative ring under the addition and multiplication of S.

Proposition Let S be a commutative ring, and let R be a nonempty subset of S. Then

R is a subring of S if and only if

(i) R is closed under addition and multiplication; and

(ii) if a R, then -a R.

Definition Let R be a commutative ring with identity element 1. An element a R is

said to be invertible if there exists an element b R such that ab = 1. The element a is

also called a unit of R, and its multiplicative inverse is usually denoted by a-1.

Proposition Let R be a commutative ring with identity. Then the set R× of units of R

is an abelian group under the multiplication of R.

An element e of a commutative ring R is said to be idempotent if e2 = e. An element

a is said to be nilpotent if there exists a positive integer n with an = 0.

Definition Let R and S be commutative rings. A function :R->S is called a ring

homomorphism if
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(a+b) = (a) + (b) and (ab) = (a) (b) for all a,b R.

A ring homomorphism that is one-to-one and onto is called an isomorphism. If there

is an isomorphism from R onto S, we say that R is isomorphic to S, and write R S.

An isomorphism from the commutative ring R onto itself is called

an automorphism of R.

Proposition

(a) The inverse of a ring isomorphism is a ring isomorphism.

(b) The composition of two ring isomorphisms is a ring isomorphism.

Proposition Let : R -> S be a ring homomorphism. Then

(a) (0) = 0;

(b) (-a) = - (a) for all a in R;

(c) if R has an identity 1, then (1) is idempotent;

(d) (R) is a subring of S.

Definition Let : R -> S be a ring homomorphism. The set { a R | (a) = 0 }

is called the kernel of , denoted by ker ( ).

Proposition Let : R -> S be a ring homomorphism.

(a) If a, b ker( ) and r R, then a + b, a - b, and ra belong to

ker( ).

(b) The homomorphism is an isomorphism if and only if ker( ) = {0}

and (R) = S.

Example Let R and S be commutative rings, let : R -> S be a ring homomorphism,

and let s be any element of S. Then there exists a unique ring homomorphism

: R[x] -> S such that (r) = (r) for all r R and (x) = s, defined by

(a0 + a1x + ... + amxm) = (a0) + (a1)s + ... + (am)sm.

Proposition Let R and S be commutative rings. The set of ordered pairs (r,s) such that

r R and s S is a commutative ring under componentwise addition and

multiplication.

Definition Let R and S be commutative rings. The set of ordered pairs (r,s) such that

r R and s S is called the direct sum of R and S.
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Example The ring Zn is isomorphic to the direct sum of the rings Zk that arise in the

prime factorization of n. This describes the structure of Zn in terms of simpler rings,

and is the first example of what is usually called a ``structure theorem.'' This structure

theorem can be used to determine the invertible, idempotent, and nilpotent elements

of Zn and provides an easy proof of our earlier formula for the Euler phi-function in

terms of the prime factors of n.

Definition Let R be a commutative ring with identity. The smallest positive integer n

such that (n)(1) = 0 is called the characteristic of R, denoted by char(R). If no such

positive integer exists, then R is said to have characteristic zero.

Ideals and factor rings

Definition Let R be a commutative ring. A nonempty subset I of R is called

an ideal of R if

(i) a ± b I for all a,b I, and

(ii) ra I, for all a I and r R.

Proposition Let R be a commutative ring with identity. Then R is a field if and only if

it has no proper nontrivial ideals.

Definition Let I be a proper ideal of the commutative ring R. Then I is said to be

a prime ideal of R if for all a,b R it is true that ab I implies a I or b I.

The ideal I is said to be a maximal ideal of R if for all ideals J of R such that

I J R, either J = I or J = R.

For an ideal I of a commutative ring R, the set { a+I | a R } of cosets of I in R (under

addition) is denoted by R/I. By Theorem 3.8.4, the set forms a group under addition.

The next theorem justifies calling R/I the factor ring of R modulo I.

Theorem If I is an ideal of the commutative ring R, then R/I is a commutative ring,

under the operations (a+I) + (b+I) = (a+b) + I and (a+I)(b+I) = ab + I, for all a,b R.

Proposition Let I be an ideal of the commutative ring R.

(a) The natural projection mapping : R -> R/I defined by (a) = a+I for all

a R is a ring homomorphism, and ker( ) = I.

http://www.math.niu.edu/~beachy/aaol/groups2.html
http://www.math.niu.edu/~beachy/aaol/groups2.html
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(b) There is a one-to-one correspondence between the ideals of R/I and the

ideals of R that contain I.

Theorem [Fundamental Homomorphism Theorem for Rings] Let :R->S be a ring

homomorphism. Then R/ker( ) is isomorphic to (R).

Integral domains

Definition A commutative ring R with identity is called an integral domain if for all

a,b R, ab = 0 implies a = 0 or b = 0.

The ring of integers Z is the most fundamental example of an integral domain. The

ring of all polynomials with real coefficients is also an integral domain, but the larger

ring of all real valued functions is not an integral domain.

The cancellation law for multiplication holds in R if and only if R has no nonzero

divisors of zero. One way in which the cancellation law holds in R is if nonzero

elements have inverses in a larger ring; the next two results characterize integral

domains as subrings of fields (that contain the identity 1).

Theorem Let F be a field with identity 1. Any subring of F that contains 1 is an

integral domain.

Theorem Let D be an integral domain. Then there exists a field F that contains a

subring isomorphic to D.

Theorem Any finite integral domain must be a field.

Proposition An integral domain has characteristic 0 or p, for some prime number p.

Proposition Let I be a proper ideal of the commutative ring R with identity.

(a) The factor ring R/I is a field if and only if I is a maximal ideal of R.

(b) The factor ring R/I is a integral domain if and only if I is a prime ideal of R.

(c) If I is maximal, then it is a prime ideal.

Definition Let R be a commutative ring with identity, and let a R. The ideal

http://www.math.niu.edu/~beachy/aaol/rings.html
http://www.math.niu.edu/~beachy/aaol/rings.html
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Ra = { x R | x = ra for some r R }is called the principal ideal generated by a.

An integral domain in which every ideal is a principal ideal is called a principal ideal

domain.

Example (Z is a principal ideal domain) theorem shows that the ring of integers Z is

a principal ideal domain. Moreover, given any nonzero ideal I of Z, the smallest

positive integer in I is a generator for the ideal.

Theorem Every nonzero prime ideal of a principal ideal domain is maximal.

Example (Ideals of F[x]) Let F be any field. Then F[x] is a principal ideal domain,

since by the ideals of F[x] have the form I = <f(x)>, where f(x) is the unique monic

polynomial of minimal degree in the ideal. The ideal I is prime (and hence maximal)

if and only if f(x) is irreducible. If p(x) is irreducible, then the factor ring

F[x] / <p(x)> is a field.

Example (Evaluation mapping) Let F be a subfield of E, and for any element u E

define the evaluation mapping u: F[x] -> E by u(g(x)) = g(u), for all g(x) F[x].

Since u(F[x]) is a subring of E that contains 1, it is an integral domain, and so the

kernel of u is a prime ideal. Thus if the kernel is nonzero, then it is a maximal ideal,

so F[x] / ker( u) is a field, and the image of u is a subfield of E.



Unit- IV

1. Define Ring
Suppose R is a non-empty set equipped with two binary operations called
addition and multiplication denoted by ‘+’ and ‘.’respectively. i.e, )for all

Rba , we have Rba  and Rba  . Then the algebraic is structure
(R,+,.) is called a ring, if the following postulates are satisfied:
1.Addition is associative,i.e,

Rcbacbacba  ,,)()( .

2.Addition is commutative,i.e, a+b=b+a Rbaabba  ,

3. There exists an element denoted by 0 in R such that Raaa 0

4. To each element a in R there exists an element –a in R such that
0)(  aa

5.Multiplication is associative, i.e, Rcbacbacba  ,,)()( .

6. Multiplication is distributive with respect to addition, i.e., for all a,b,c in R

acabacb
cabacba




)( and
)(

2. When will you say ring is a ring with unity.

If a ring possesses multiplicative identity then it is a ring with unity.

3. Give an example of a ring with unity
The set Q of all rational numbers is ring with unity.

4. Define commutative ring
If in a ring R, the multiplication composition is also commutative ie., if we

have
Rbaabba  , then R is called a commutative ring.

5. Prove that if R is a ring, then for all Ra , 000  aa .

Therefore 0000 aaa  . Now R is a group with respect to addition,
therefore applying right cancellation law for addition in R we get 00 a .
Similarly we have

aa
aa

00
)00(0




00
)00(0

aa
aa






Therefore aaa 0000 
Applying right cancellation law for addition in R we get a00 

6. Give an example of a Ring with unity
The set I of all integers is a ring with unity, the addition and multiplication
of integers as the two ring compositions.

7. Give an example of a Ring with out unity
The set 2I of all even integers is a commutative ring with out unity, the
addition and multiplication of integers being the two ring compositions.

8. Define zero divisor
A non-zero element of a ring R is called a zero divisor or a divisor of zero if
there exists an element Rb  0 such that either 0baor  0 ab

9. Define ring without zero divisors

A ring R is without zero divisors if the product of no two non-zero elements
of R is zero, i.e., if 0orb 00  aab

10. Give an example of a ring without zero divisors
The ring of integers is a ring without zero divisors.
The product of two non-zero integers cannot be equal to the zero integer.

11. Define Integral domain
A ring is called an integral domain if it (i) is commutative, (ii) has unit
element, (iii) is without zero divisors.

12. Show that the set of integers is an integral domain
The set of integers is a commutative ring with unity. Also I does not possess
zero divisors because if a and b are integers such that 0ab , then either a or
b must be zero.
Therefore the set of integers is an integral domain.

13. Define characteristic of a ring
ith zero element 0 and suppose there exists a positive integer n such that

0  n terms upto ...  aana for every Ra . The smallest such positive
integer n is called the characteristic of the ring R. If there exists no such
positive integer, then R is said to be of characteristic zero or infinite.

14. Give an example of two rings whose characteristic is zero.
1. The ring of integers
2. The ring of rational numbers.

15. Show that the ring of integers modulo 6 has characteristic 6.
In the ring of integers modulo 6, we have 06 x for every x in the ring .
Obviously no integer smaller than 6 satisfies this property. For instance, 5
cannot be the characteristic, since 4)2(5  in I6 and 04  .
Therefore the ring of integers modulo 6 has characteristic 6.

16. Define onto homomorphism of rings
A mapping f from a ring R onto a ring R is said to be a homomorphism of
R onto if
i) Rbabfafbaf  ,)()()(



ii) Rba, allfor  )()()(  bfafabf ring R
17. If f is a homomorphism of a ring R into a ring R then

Raafaf  )()( .
Let a be any element of R. Then Ra . We have

)()()]([)0(0 afafaaff  .
Therefore )( af  is the additive inverse of )(af in the ring Thus

)()( afaf  .
18. Define Kernel of a ring homomorphism

If f is a homomorphism of a ring R into a ring R then the set of all those
elements of R which are mapped onto the zero element of R is called the
kernel of the homomorphism f.

19. Show that every homomorphic image of a commutative ring is commutative.
Let R be a commutative ring. Let f be a homomorphic mapping of R onto a

ring R .
Then R is a homomorphic image of R.
Let ba , be any two elements of R . Then bf(b),)(  aaf for some

Rba , because f is onto R .
20. If R is a ring with unit element 1 and  is a homomorphism of R into

Rprove that )1( is the unit element of R .
Since  is a homomorphism of R onto R therefore R is a homomorphic
image of R. If 1 is the unit element of R, then R)1( . Let a be any
element of R . Then )(aa  for some Ra since  is onto R . We have

aaaaa  )()1()()1()1( 
And aaaaa  )()1()1()()1( 
Therefore )1( is the unity element of R .



Unit-IV- REVISION

1. If R is a ring then for all Rcba ,,
i) 000  aa
ii) a (-b)=-(ab)=(-a)b
iii) abba  ))((
iv) acabcba  )(
v) cabaacb  )(

2. Show that the set I of all integers is a ring with respect to addition and
multiplication of integers as the two ring composition.



3. Show that the set R of all real numbers is a ring with respect to addition and
multiplication of real numbers as the two ring compositions.



4. Prove that the set Q of all rational numbers is a commutative ring with unity,
the addition and multiplication of rational numbers being the two ring
compositions.



5. Show that the set M of all nn matrices with their elements as real
numbers(rational numbers, complex numbers, Integers) is a non-commutative
ring with unity, with respect to addition and multiplication of matrices.

6. Prove that the set }4,3,2,1,0{R is a commutative ring with respect to

6 6   and as the two ring compositions.

Solution: Let R = {0, 1, 2, 3, 4}. Addition and multiplication tables for given
set R are:

+ mod 5 0 1 2 3 4 . mod 5 0 1 2 3 4



0 0 1 2 3 4 0 0 0 0 0 0

1 1 2 3 4 0 1 0 1 2 3 4

2 2 3 4 0 1 2 0 2 4 1 3

3 3 4 0 1 2 3 0 3 1 4 2

4 4 0 1 2 3 4 0 4 3 2 1

From the addition composition table the following is clear:

(i) Since all elements of the table belong to the set, it is closed under addition (mod
5).

(ii) Addition (mod 5) is always associative.

(iii) 0 ∈R is the identity of addition.

(iv) The additive inverse of the elements 0, 1, 2, 3, 4 are 0, 4, 3, 2, 1 respectively.

(v) Since the elements equidistant from the principal diagonal are equal to each other,
the addition (mod 5) is commutative.From the multiplication composition table, we
see that (R, .) is a semi group, i.e. following axioms hold good.

(vi) Since all the elements of the table are in R, the set R is closed under
multiplication (mod 5).

(vii) Multiplication (mod 5) is always associative.

(viii) The multiplication (mod 5) is left as well as right distributive over addition
(mod 5).

Hence (R,+, .) is a ring.

7. If a,b are any elements of a ring R, Prove that
i) aa  )(
ii)
iii) baba  )(
iv) baba  )(

8. If two operations  and  on the set I of integers are defined as follows:
ab-baba ,1  baba Prove that the system ), I,(  is a commutative

ring with identity.
9. Prove that the set M of 2 x 2 matrices over the field of real numbers is a ring

with respect to addition and multiplication. Is it a commutative ring with unity
element? Find the zero element.



10. If R is a ring such that a2=a for every Ra . Prove that
i) a+a=0 for every Ra
ii) a+b=0 implies a=b
iii) R is commutative ring

(OR)
1. Prove that a ring R is without zero divisors if and if the cancellation laws

hold in R.
2. Show that the set of all integers is an integral domain with respect to addition

and multiplication.



3. Define a ring and an integral domain. Give an example of a ring which is not
an integral domain.

4. Give an example each of which is
i) a non-commutative ring
ii) ring without zero divisors
iii) division ring
iv) a ring which is not an integral domain

5. Show that the characteristic of a ring with unity is 0 or 0n according as the
unity element 1 regarded as a member of the additive group of the ring has the
order zero or n.

6. Show that the set of all real numbers of the form 2ba  with a and b as
integers is an integral domain with respect to ordinary addition and
multiplication.

7. Prove that the characteristic of an integral domain is 0 or 0n according as
the order of any non-zero element regarded as a member of the additive group
of integral domain is either 0 or n.

8. Prove that each non-zero element of an integral domain D, regarded as a
member of the additive group of D, is of the same order.

9. Prove that the characteristic of an integral domain is either 0 or a prime
number.

10. If f is a homomorphism of a ring R into ring R then

i) 0)0( f , where 0 is the zero element of the ring R and 0 is the zero
element of R .

ii) Raafaf  )()( be a homomorphic mapping of a ring R into a ring
R .



UNIT 5- SUBRINGS

Definition Let S be a commutative ring. A nonempty subset R of S is called
a subring of S if it is a commutative ring under the addition and
multiplication of S.

Definition Let R be a commutative ring. A nonempty subset I of R is called
an ideal of R if

(i) a ± b I for all a,b I, and

(ii) ra I, for all a I and r R.

Subrings and ideals

These are the concepts which play the same role as subgroups and normal
subgroups in group theory.

Definition

A subring S of a ring R is a subset of R which is a ring under the same
operations as R.

Equivalently: The criterion for a subring
A non-empty subset S of R is a subring if a, b ∈ S ⇒ a - b, ab ∈ S.

So S is closed under subtraction and multiplication.

Exercise: Prove that these two definitions are equivalent.

Remark

Using the above criterion makes it easy to check that something is a ring by
showing that it is a subring of something else since one does not need to
check associativity or distributivity.

Examples

1. The even integers 2Z form a subring of Z.
More generally, if n is any integer the set of all multiples
of n is a subring nZ of Z.
The odd integers do not form a subring of Z.

2. The subsets {0, 2, 4} and {0, 3} are subrings of Z6.
3. The set {a + bi ∈ C | a, b ∈ Z} forms a subring of C.

This is called the ring of Gaussian integers (sometimes
written Z[i]) and is important in Number Theory.



4. The set {a + b√5 | a, b ∈ Z} is a subring of the ring R.
5. The set {x + y√5 | x, y ∈ Q} is also a subring of R.

6. The set of real matrices of the form forms a subring of
the ring of all 2 × 2 real matrices.

An ideal is a special kind of subring.

Definition

A subring I of R is a left ideal if a ∈ I, r∈ R ⇒ ra∈ I.

So I is closed under subtraction and also under multiplication on the left by
elements of the "big ring".

A right ideal is defined similarly.

A two-sided ideal (or just an ideal) is both a left and right ideal.
That is, a, b ∈ I, r∈ R ⇒ a - b, ar, ra ∈ I.

Remark

These subsets are related to the ideal numbers that Eduard Kummer (1810 to
1893) defined to "restore the uniqueness of factorisation" in the rings used
for proving cases of Fermat's last theorem.

Examples

1. Examples 1) and 2) of subrings are also ideals, while examples
3), 4), 5) and 6) are not.

2. In any ring R the subsets {0} and R are both two-sided ideals.
If R is a field these are the only ideals.
Proof
Note that if the identity 1 is in an ideal then the ideal is the
whole ring. But if a field element a ≠ 0 is in an ideal, so
is a-1a and so 1 is in too.

3. The set of real matrices of the form forms a left ideal of
the ring of all 2 × 2 real matrices while those of the

form form a right ideal of this ring.
This ring does not have any proper non-trivial two-sided
ideals.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Kummer.html


4. The set of all polynomials over any ring with 0 "constant"
coefficient form an ideal.
Proof
Such a polynomial is of the form xq(x) for some
polynomial q(x) and it is easy to verify the ideal condition for
these.

5. The set of all polynomials in Z[x] whose coefficients are
all even is an ideal. So is the set of those with even constant
coefficient.

Here is a very important way of making ideals.

Definitions

Let R be a commutative ring with identity. Let S be a subset of R. The ideal
generated by S is the subset < S > = {r1s1 + r2s2 + ... + rksk ∈ R | r1 , r2 , ...
∈ R, s1 , s2 , ... ∈ S, k ∈ N}.

In particular, if S has a single element s this is called the principal ideal
generated by s.

That is, < s > = {rs | r ∈ R}.

Remarks

1. It is easy to see that the above does define an ideal.
2. If the ring is not commutative then the above defines

a left ideal. It is easy to modify the definition to get a right
ideal or a two-sided ideal. If the ring does not have an identity
then in general S will not be a subset of < S > .

3. In general, the "thing" generated by a subset is the smallest
"thing" containing the subset. So you can talk about the
subgroup of a group generated by a subset or the subring of a
ring generated by a subset, ...

Examples

1. The ideal 2Z of Z is the principal ideal < 2 >.
2. Example 4 above (the polynomials in R[x] with 0 constant term) is

the principal ideal < x > .
3. The set of all polynomials in Z[x] whose coefficients are all even is

the principal ideal < 2 >.
The set of all polynomials with even constant coefficient is the ideal
< 2, x > and is not principal.



4. The set of polynomials in R[x, y] with zero constant coefficient is the
ideal < x, y > and is not principal.

5. For any commutative ring with identity, the trivial ideal {0} is the
principal ideal < 0 > and the whole ring is the principal ideal < 1 >.

Remark

We will see later that in the rings Z and R[x] every ideal is principal.



Unit -V

1. Define subring
Let R be a ring. A non-empty subset S of the ring R is said to be a subring of R is S is closed with
respect to the operations of addition and multiplication in R and S itself is a ring for these
operations.

2. Define improper subrings
The subrings {0} and R are known as improper subrings of R.

3. Define proper subrings
The subrings of R other than {0} and R are known as proper subrings of R.

4. State the necessary and sufficient condition for a non-empty subset S of a ring R to be a subring
of R.
i). Sb-aSb, Sa
ii). SabSb, Sa

5. Show that the set of integers is a subring of the ring of rational numbers.
6. Define an ordered integral domain.

An integral domain (D,+,.) is said to be ordered if D contains a subset D such that

i) D is closed with respect to addition and multiplication as defined on D.

ii) Da one and only one of a=0,   Da- ,Da holds.

The elements of D are called positive elements of D, all other non-zero elements of D
are called negative elements of D.

7. Define left ideal
A non empty subset S of a ring R is said to be a left ideal of R if:
i) S is a subgroup of R with respect to addition
ii) Ss R,r Srs 

8. Define right ideal
A non empty subset S of a ring R is said to be a right ideal of R if:
S is a subgroup of R with respect to addition

Ss R,r Ssr 
9. Define ideal

A non empty subset S of a ring R is said to be an ideal (also two sided ideal)
i) S is a subgroup of R under addition. i.e., S is a subgroup of the additive group of R.
ii) Srs and Ssr for every Rr and for every Ss .

10. Define proper ideal
An ideal of R other than the two ideals 0 and R are known as proper ideal of R.

11. Show that the set of integers is only a subring but not an ideal of the ring of rational numbers
(Q,+,.)

The product of a rational number and an integer is not necessarily an integer.

For example, QI  5
2,3 but I 5/63).5/2(



Therefore I is not an ideal of the ring of rational numbers.

12. Define field of Quotients
If D is a commutative ring with out zero divisors, then we shall see that it can be embedded in a
field F i.e, there exists a field F which contains a subset D’ isomorphic to D. We shall construct a
field F with the help of elements of D and this field F will contain a subset D such that D is
isomorphic to D . This field F is called the field of Quotients of D.

13. Define Quotient ring
Suppose R is an arbitrary ring and S is an ideal in R. Then S is a subgroup of the additive abelian
group of R. The cosets of S in R are called the residue classes of S in R. We denote the set of all
residue classes of S in R by the symbol ./ SR Thus }:{./ RaaSSR  .

14. If an ideal U of a ring R contains a unit of R then U =R.
Let R be a ring with unity element 1. Let u be a unit of R Then u is an inversible
element of R i.e, u-1 exists . Let Uu . Since U is an ideal, therefore

UUuuRuUu   1, 11 .
Now let x be any element of R. Then UxUx1U1 , Rx
Therefore UR  .
Also RU  as U is an ideal of R. Hence U=R.

15. Define Maximal Ideal

An ideal RS  in a ring R is said to be a maximal ideal of R if when ever U is an ideal of R such
that RUS  , then either UR  or US  .

16. Define Prinicipal ideal
An ideal S of a ring R is said to be a prinicipal ideal if there exists an element Sa such that any
ideal T of R containing a also contains S i.e, S= (a).

17. Define Prime ideal
Let R be a ring and S is an ideal in R. Then S is said to be a prime ideal of R if

Rab , Sab implies that either a or b is in S.
18. Define Field

A ring R with atleast two elements is called a field if it,
i) is commutative
ii) has unity
iii) is such that each non zero element possesses multiplicative inverse.

19. Define Division ring
A ring R with atleast two elements is called division ring if it
i) has unity
ii) is such that each non zero element possesses multiplicative inverse.

20. Give an example of integral domain but not field.
The ring of all integers is an integral domain and it is not a field. The only invertible elements of
the ring of integers are 1 and -1.





Practice questions in Unit-V

1. Prove that necessary and sufficient condition for a non-empty subset S of a ring R to
be a subring of R are

i). Sb-aSb, Sa
ii). SabSb, Sa

2. Prove that the intersection of two subrings is a subring.
3. Prove that an arbitrary intersection of subrings is a subring.

4. Show that the set of matrices 







c
ba

0
is a subring of the ring of 2 x 2 matrices with

integral elements.
5. Prove that the intersection of two ideals of R is an ideal of R.
6. Show that S is an ideal of TS  where S is any ideal of ring R, and T any subring of

R.
7. Let  be a homomorphic mapping of a ring R into a ring R . Let Sbe the

homomorphic image of R in R . Then S is a subring of R .
8. If f is a homomorphism of a ring R into a ring Rwith kernel S, then S is an ideal of

R.
9. Prove that a commutative ring with zero divisors can be embedded in a field.
10. Suppose R is a ring, S an ideal of R. Let f be a mapping from R to R|S defined by

RaaSaf )( . Then prove that f is an homomorphism of R onto R/S . .

(OR)

1. State and prove fundamental theorem on homomorphism of rings
2. Prove that an ideal S of the ring of integers I is maximal if and only if S is generated

by some prime integer.
3. Let R be a commutative ring and S an ideal of R, Then the ring of residue classes

SR / is an integral domain if and only if S is a prime ideal.
4. Let 1S , 2S be ideals of a ring R and let },:{ 22112121 SsSsssSS  .Then

S1 +S2 is an ideal of R generated by 21 SS 
5. Let R be a commutative ring with unity and a,b be two non-zero elements of R. Then

)()( ba  iff a|b and | ba .
6. Let R be a ring with unit element, R not necessarily commutative, such that the only

right ideals of R are (0) and R. Prove that R is a division ring.
7. Show that the set of all rational numbers is a field.
8. Show that the set of real numbers is a field.
9. Show that every field is an integral domain.
10. Show that every finite integral domain is a field.
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